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15.1 Viscoelasticity

The material response discussed in the previous chapters

was limited to the response of elastic materials, in particular

to linearly elastic materials. Most metals, for example,

exhibit linearly elastic behavior when they are subjected to

relatively low stresses at room temperature. They undergo

plastic deformations at high stress levels. For an elastic

material, the relationship between stress and strain can be

expressed in the following general form:

s ¼ sðeÞ: (15.1)

Equation (15.1) states that the normal stress s is a func-

tion of normal strain e only. The relationship between the

shear stress t and shear strain g can be expressed in a similar

manner. For a linearly elastic material, stress is linearly

proportional to strain, and in the case of normal stress and

strain, the constant of proportionality is the elastic modulus

E of the material (Fig. 15.1):

s ¼ Ee: (15.2)

While investigating the response of an elastic material, the

concept of time does not enter into the discussions. Elastic

materials show time-independent material behavior. Elastic

materials deform instantaneously when they are subjected to

externally applied loads. They resume their original

(unstressed) shapes almost instantly when the applied loads

are removed.

There is a different group of materials—such as polymer

plastics, almost all biological materials, and metals at high

temperatures—that exhibits gradual deformation and recov-

ery when they are subjected to loading and unloading.

The response of such materials is dependent upon how

quickly the load is applied or removed, the extent of defor-

mation being dependent upon the rate at which the deforma-

tion-causing loads are applied. This time-dependent material

behavior is called viscoelasticity. Viscoelasticity is made up

of two words: viscosity and elasticity. Viscosity is a fluid

property and is a measure of resistance to flow. Elasticity,
on the other hand, is a solid material property. Therefore,

a viscoelastic material is one that possesses both fluid and

solid properties.

For viscoelastic materials, the relationship between stress

and strain can be expressed as:

s ¼ sðe; _eÞ: (15.3)

Equation (15.3) states that stress, s, is not only a function
of strain, e, but is also a function of the strain rate, _e ¼ de=dt,
where t is time. A more general form of Eq. (15.3) can be

obtained by including higher order time derivatives of strain.

Equation (15.3) indicates that the stress–strain diagram of a

viscoelastic material is not unique but is dependent upon the

rate at which the strain is developed in the material

(Fig. 15.2).Fig. 15.1 Linearly elastic material behavior
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15.2 Analogies Based on Springs
and Dashpots

In Sect. 13.8, while covering Hooke’s Law, an analogy was

made between linearly elastic materials and linear springs.

An elastic material deforms, stores potential energy, and

recovers deformations in a manner similar to that of a spring.

The elastic modulus E for a linearly elastic material relates

stresses and strains, whereas the constant k for a linear spring

relates applied forces and corresponding deformations

(Fig. 15.3). Both E and k are measures of stiffness. The

similarities between elastic materials and springs suggest

that springs can be used to represent elastic material behav-

ior. Since these similarities were first noted by Robert

Hooke, elastic materials are also known as Hookean solids.

When subjected to external loads, fluids deform as well.

Fluids deform continuously, or flow. For fluids, stresses are
not dependent upon the strains but on the strain rates. If the

stresses and strain rates in a fluid are linearly proportional,

then the fluid is called a linearly viscous fluid or a Newtonian
fluid. Examples of linearly viscous fluids include water and

blood plasma. For a linearly viscous fluid,

s ¼ �ð_eÞ: (15.4)

In Eq. (15.4), � (eta) is the constant of proportionality

between the stress s and the strain rate _e, and is called the

coefficient of viscosity of the fluid. As illustrated in Fig. 15.4,
the coefficient of viscosity is the slope of the s� _e graph of a
Newtonian fluid. The physical significance of this coefficient

is similar to that of the coefficient of friction between the

contact surfaces of solid bodies. The higher the coefficient

of viscosity, the “thicker” the fluid and the more difficult it is

to deform. The coefficient of viscosity for water is about

1 centipoise at room temperature, while it is about 1.2

centipoise for blood plasma.

The spring is one of the two basic mechanical elements

used to simulate the mechanical behavior of materials. The

second basic mechanical element is called the dashpot,
which is used to simulate fluid behavior. As illustrated in

Fig. 15.5, a dashpot is a simple piston–cylinder or a syringe

type of arrangement. A force applied on the piston will

advance the piston in the direction of the applied force.

The speed of the piston is dependent upon the magnitude

of the applied force and the friction occurring between the

contact surfaces of the piston and cylinder. For a linear

dashpot, the applied force and speed (rate of displacement)

are linearly proportional, the coefficient of friction m (mu)

being the constant of proportionality. If the applied force and

the displacement are both in the x direction, then,

F ¼ m _x: (15.5)

Fig. 15.3 Analogy between a linear spring and an elastic solid

Fig. 15.4 Stress–strain rate diagram for a linearly viscous fluid

Fig. 15.2 Strain rate (_e) dependent viscoelastic behavior

Fig. 15.5 A linear dashpot and its force–displacement rate diagram
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In Eq. (15.5), _x ¼ dx=dt is the time rate of change of

displacement or the speed.

By comparing Eqs. (15.4) and (15.5), an analogy can be

made between linearly viscous fluids and linear dashpots.

The stress and the strain rate for a linearly viscous fluid are,

respectively, analogous to the force and the displacement

rate for a dashpot; and the coefficient of viscosity is analo-

gous to the coefficient of viscous friction for a dashpot.

These analogies suggest that dashpots can be used to repre-

sent fluid behavior.

15.3 Empirical Models of Viscoelasticity

Springs and dashpots constitute the building blocks of model

analyses in viscoelasticity. Springs and dashpots connected

to one another in various forms are used to construct empiri-

cal viscoelastic models. Springs are used to account for the

elastic solid behavior and dashpots are used to describe the

viscous fluid behavior (Fig. 15.6). It is assumed that a con-

stantly applied force (stress) produces a constant deformation

(strain) in a spring and a constant rate of deformation (strain

rate) in a dashpot. The deformation in a spring is completely

recoverable upon release of applied forces, whereas the

deformation that the dashpot undergoes is permanent.

15.3.1 Kelvin–Voight Model

The simplest forms of empirical models are obtained by

connecting a spring and a dashpot together in parallel and

in series configurations. As illustrated in Fig. 15.7, the

Kelvin–Voight model is a system consisting of a spring and

a dashpot connected in a parallel arrangement. If subscripts

“s” and “d” denote the spring and dashpot, respectively, then

a stress s applied to the entire system will produce stresses

ss and sd in the spring and the dashpot. The total stress

applied to the system will be shared by the spring and the

dashpot such that:

s ¼ ss þ sd: (15.6)

As the stress s is applied, the spring and dashpot will

deform by an equal amount because of their parallel arrange-

ment. Therefore, the strain e of the system will be equal to

the strains es and ed occurring in the spring and the dashpot:

e ¼ es ¼ ed: (15.7)

The stress–strain relationship for the spring and the

stress–strain rate relationship for the dashpot are:

ss ¼ Ees; (15.8)

sd ¼ �_ed: (15.9)

Substituting Eqs. (15.8) and (15.9) into Eq. (15.6) will

yield:

s ¼ Ees þ �_ed: (15.10)

From (15.7), es ¼ ed ¼ e. Therefore,

s ¼ Eeþ �_e: (15.11)

Note that the strain rate _e can alternatively be written as

de=dt. Consequently,

s ¼ Eeþ �
de
dt

: (15.12)

Equation (15.12) relates stress to strain and the strain rate

for the Kelvin–Voight model, which is a two-parameter

(E and �) viscoelastic model. Equation (15.12) is an ordi-
nary differential equation. More specifically, it is a first

order, linear ordinary differential equation. For a given stress

s, Eq. (15.12) can be solved for the corresponding strain e.
For prescribed strain e, it can be solved for stress s.

Note that the review of how to handle ordinary differen-

tial equations is beyond the scope of this text. The interested

Fig. 15.6 Spring represents elastic and dashpot represents viscous

material behaviors

Fig. 15.7 Kelvin–Voight model
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reader is encouraged to review textbooks in “differential

equations.”

15.3.2 Maxwell Model

As shown in Fig. 15.8, the Maxwell model is constructed by

connecting a spring and a dashpot in a series. In this case, a

stress s applied to the entire system is applied equally on the

spring and the dashpot (s ¼ ss ¼ sd), and the resulting

strain e is the sum of the strains in the spring and the dashpot

(e ¼ es þ ed). Through stress–strain analyses similar to those

carried out for the Kelvin–Voight model, a differential equa-

tion relating stresses and strains for the Maxwell model can

be derived in the following form:

� _sþ Es ¼ E�_e: (15.13)

This is also a first order, linear ordinary differential equa-

tion representing a two-parameter (E and �) viscoelastic

behavior. For a given stress (or strain), Eq. (15.13) can be

solved for the corresponding strain (or stress).

Notice that springs are used to represent the elastic solid

behavior, and there is a limit to how much a spring can

deform. On the other hand, dashpots are used to represent

fluid behavior and are assumed to deform continuously

(flow) as long as there is a force to deform them. For

example, in the case of a Maxwell model, a force applied

will cause both the spring and the dashpot to deform. The

deformation of the spring will be finite. The dashpot will

keep deforming as long as the force is maintained. There-

fore, the overall behavior of the Maxwell model is more like

a fluid than a solid, and is known to be a viscoelastic fluid
model. The deformation of a dashpot connected in parallel to

a spring, as in the Kelvin–Voight model, is restricted by the

response of the spring to the applied loads. The dashpot in

the Kelvin–Voight model cannot undergo continuous

deformations. Therefore, the Kelvin–Voight model

represents a viscoelastic solid behavior.

15.3.3 Standard Solid Model

The Kelvin–Voight solid and Maxwell fluid are the basic

viscoelastic models constructed by connecting a spring and a

dashpot together. They do not represent any known real

material. However, in addition to springs and dashpots,

they can be used to construct more complex viscoelastic

models, such as the standard solid model. As illustrated in

Fig. 15.9, the standard solid model is composed of a spring

and a Kelvin–Voight solid connected in a series. The stan-

dard solid model is a three-parameter (E1;E2, and �) model

and is used to describe the viscoelastic behavior of a number

of biological materials such as the cartilage and the white

blood cell membrane. The material function relating the

stress, strain, and their rates for this model is:

ðE1 þ E2Þsþ � _s ¼ ðE1E2eþ E1�_eÞ: (15.14)

In Eq. (15.14), _s ¼ ds=dt is the stress rate and _e ¼ de=dt
is the strain rate. This equation can be derived as follows.

As illustrated in Fig. 15.10, the model can be represented by

two units, A and B, connected in a series such that unit A is

an elastic solid and unit B is a Kelvin–Voight solid. If sA and

eA represent stress and strain in unit A, and sB and eB are

stress and strain in unit B, then,

sA ¼ E1eA; (i)

sB ¼ E2eB þ �
deB
dt
¼ E2 þ �

d

dt

� �
eB: (ii)

Since units A and B are connected in a series:

eA þ eB ¼ e; (iii)

sA ¼ sB ¼ s: (iv)

Substitute Eq. (iv) into Eqs. (i) and (ii) and express them

in terms of strains eA and eB:

eA ¼ s
E1

; (v)

Fig. 15.8 Maxwell model

Fig. 15.9 Standard solid model

Fig. 15.10 Standard solid model is represented by units A and B
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eB ¼ s
E2 þ �ðd=dtÞ : (vi)

Substitute Eqs. (v) and (vi) into Eq. (iii):

s
E1

þ s
E2 þ �ðd=dTÞ ¼ e:

Employ cross multiplication and rearrange the order of

terms to obtain

ðE1 þ E2Þsþ �
ds
dt
¼ E1E2eþ E1�

de
dt

15.4 Time-Dependent Material Response

An empirical model for a given viscoelastic material can be

established through a series of experiments. There are sev-

eral experimental techniques designed to analyze the time-

dependent aspects of material behavior. As illustrated in

Fig. 15.11a, a creep and recovery (recoil) test is conducted
by applying a load (stress so) on the material at time t0,

maintaining the load at a constant level until time t1, sud-

denly removing the load at t1, and observing the material

response. As illustrated in Fig. 15.11b, the stress relaxation

experiment is done by straining the material to a level eo and
maintaining the constant strain while observing the stress

response of the material. In an oscillatory response test, a

harmonic stress is applied and the strain response of the

material is measured (Fig. 15.11c).

Consider a viscoelastic material. Assume that the mate-

rial is subjected to a creep test. The results of the creep test

can be represented by plotting the measured strain as a

function of time. An empirical viscoelastic model for the

material behavior can be established through a series of

trials. For this purpose, an empirical model is constructed

by connecting a number of springs and dashpots together. A

differential equation relating stress, strain, and their rates is

derived through the procedure outlined in Sect. 15.3 for the

Kelvin–Voight model. The imposed condition in a creep test

is s ¼ so. This condition of constant stress is substituted into
the differential equation, which is then solved (integrated)

for strain e. The result obtained is another equation relating

strain to stress constant so, the elastic moduli and

coefficients of viscosity of the empirical model, and time.

For a given so and assigned elastic and viscous moduli, this

equation is reduced to a function relating strain to time. This

function is then used to plot a strain versus time graph and is

compared to the experimentally obtained graph. If the gen-

eral characteristics of the two (experimental and analytical)

curves match, the analyses are furthered to establish the

elastic and viscous moduli (material constants) of the mate-

rial. This is achieved by varying the values of the elastic and

viscous moduli in the empirical model until the analytical

curve matches the experimental curve as closely as possible.

In general, this procedure is called curve fitting. If there is no

general match between the two curves, the model is aban-

doned and a new model is constructed and checked.

The result of these mathematical model analyses is an

empirical model and a differential equation relating stresses

and strains. The stress–strain relationship for the material

can be used in conjunction with the fundamental laws of

mechanics to analyze the response of the material to differ-

ent loading conditions.

Note that the deformation processes occurring in visco-

elastic materials are quite complex, and it is sometimes

necessary to use an array of empirical models to describe

the response of a viscoelastic material to different loading

conditions. For example, the shear response of a viscoelastic

material may be explained with one model and a different

model may be needed to explain its response to normal

loading. Different models may also be needed to describe

the response of a viscoelastic material at low and high

strain rates.

15.5 Comparison of Elasticity
and Viscoelasticity

There are various criteria with which the elastic and visco-

elastic behavior of materials can be compared. Some of these

criteria are discussed in this section.

An elastic material has a unique stress–strain relationship

that is independent of the time or strain rate. For elastic
Fig. 15.11 (a) Creep and recovery, (b) stress relaxation, and (c)
oscillatory response tests
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materials, normal and shear stresses can be expressed as

functions of normal and shear strains:

s ¼ sðeÞ and t ¼ tðgÞ:

For example, the stress–strain relationships for a linearly

elastic solid are s ¼ Ee and t ¼ Gg, where E and G are

constant elastic moduli of the material. As illustrated in

Fig. 15.12, a linearly elastic material has a unique normal

stress–strain diagram and a unique shear stress–strain diagram.

Viscoelastic materials exhibit time-dependent material

behavior. The response of a viscoelastic material to an

applied stress not only depends upon the magnitude of the

stress but also on how fast the stress is applied to or removed

from the material. Therefore, the stress–strain relationship

for a viscoelastic material is not unique but is a function of

the time or the rate at which the stresses and strains are

developed in the material:

s ¼ sðe; _e; . . . ; tÞ and t ¼ tðg; _g; . . . ; tÞ:

Consequently, as illustrated in Fig. 15.13, a viscoelastic

material does not have a unique stress–strain diagram.

For an elastic body, the energy supplied to deform the

body (strain energy) is stored in the body as potential energy.

This energy is available to return the body to its original

(unstressed) size and shape once the applied stress is

removed. As illustrated in Fig. 15.14, the loading and

unloading paths for an elastic material coincide. This

indicates that there is no loss of energy during loading and

unloading.

For a viscoelastic body, some of the strain energy is

stored in the body as potential energy and some of it is

dissipated as heat. For example, consider the Maxwell

model. The energy provided to stretch the spring is stored

in the spring while the energy supplied to deform the dashpot

is dissipated as heat due to the friction between the moving

parts of the dashpot. Once the applied load is removed, the

potential energy stored in the spring is available to recover

the deformation of the spring, but there is no energy avail-

able in the dashpot to regain its original configuration.

Consider the three-parameter standard solid model shown

in Fig. 15.9. A typical loading and unloading diagram for this

model is shown in Fig. 15.15. The area enclosed by the

loading and unloading paths is called the hysteresis loop,

which represents the energy dissipated as heat during the

deformation and recovery phases. This area, and conse-

quently the amount of energy dissipated as heat, is dependent

upon the rate of strain employed to deform the body. The

presence of the hysteresis loop in the stress–strain diagram

for a viscoelastic material indicates that continuous loading

and unloading would result in an increase in the temperature

of the material.

Note here that most of the elastic materials exhibit plastic

behavior at stress levels beyond the yield point. For

elastic–plastic materials, some of the strain energy is

dissipated as heat during plastic deformations. This is

indicated with the presence of a hysteresis loop in their

loading and unloading diagrams (Fig. 15.16). For such

Fig. 15.12 An elastic material has unique normal and shear

stress–strain diagrams

Fig. 15.13 Stress–strain diagram for a viscoelastic material may not

be unique

Fig. 15.14 For an elastic material, loading and unloading paths

coincide

Fig. 15.15 Hysteresis loop
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materials, energy is dissipated as heat only if the plastic

region is entered. Viscoelastic materials dissipate energy

regardless of whether the strains or stresses are small or large.

Since viscoelastic materials exhibit time-dependent mate-

rial behavior, the differences between elastic and viscoelas-

tic material responses are most evident under time-

dependent loading conditions, such as during the creep and

stress relaxation experiments.

As discussed earlier, a creep and recovery test is

conducted by observing the response of a material to a

constant stress so applied at time t0 and removed at a later

time t1 (Fig. 15.17a). As illustrated in Fig. 15.17b, such a load

will cause a strain eo ¼ so
E

in a linearly elastic material

instantly at time t0. This constant strain will remain in the

material until time t1. At time t1, the material will instantly

and completely recover the deformation. To the same

constant loading condition, a viscoelastic material will

respond with a strain gradually increasing between times

t0 and t1. At time t1, gradual recovery will start. For a

viscoelastic solid material, the recovery will eventually

be complete (Fig. 15.17c). For a viscoelastic fluid, complete

recovery will never be achieved and there will be a residue of

deformation left in the material (Fig. 15.17d).

As illustrated in Fig. 15.18a, the stress relaxation test is

performed by straining a material instantaneously,

maintaining the constant strain level eo in the material, and

observing the response of the material. A linearly elastic

material response is illustrated in Fig. 15.18b. The constant

stress so ¼ Eeo developed in the material will remain as long

as the strain eo is maintained. In other words, an elastic

material will not exhibit a stress relaxation behavior.

A viscoelastic material, on the other hand, will respond with

an initial high stress that will decrease over time. If the mate-

rial is a viscoelastic solid, the stress level will never reduce

to zero (Fig. 15.18c). As illustrated in Fig. 15.18d, the stress

will eventually reduce to zero for a viscoelastic fluid.

Because of their time-dependent material behavior,

viscoelastic materials are said to have a “memory.”

In other words, viscoelastic materials remember the history

of deformations they undergo and react accordingly.

Almost all biological materials exhibit viscoelastic

properties, and the remainder of this chapter is devoted to

the discussion and review of the mechanical properties of

biological tissues including bone, tendons, ligaments,

muscles, and articular cartilage.

Fig. 15.18 Stress relaxation

Fig. 15.17 Creep and recovery

Fig. 15.16 Hysteresis loop for an elastic–plastic material

15.5 Comparison of Elasticity and Viscoelasticity 227



15.6 Common Characteristics
of Biological Tissues

One of the objectives of studies in the field of biomechanics is

to establish the mechanical properties of biological tissues so

as to develop mathematical models that help us describe and

further investigate their behavior under various loading

conditions. While conducting studies in biomechanics, it

has been a common practice to utilize engineering methods

and principles, and at the same time to treat biological tissues

like engineering materials. However, living tissues have

characteristics that are very different than engineering mate-

rials. For example, living tissues can be self-adapting and

self-repairing. That is, they can adapt to changingmechanical

demand by altering their mechanical properties, and they can

repair themselves. The mechanical properties of living

tissues tend to change with age. Most biological tissues are

composite materials (consisting of materials with different

properties) with nonhomogeneous and anisotropic proper-

ties. In other words, the mechanical properties of living

tissues may vary from point to point within the tissue, and

their response to forces applied in different directions may be

different. For example, values for strength and stiffness of

bone may vary between different bones and at different

points within the same bone. Furthermore, almost all

biological tissues are viscoelastic in nature. Therefore, the

strain or loading rate at which a specific test is conducted

must also be provided while reporting the results of the

strength measurements. These considerations require that

most of the mechanical properties reported for living tissues

are only approximations and a mathematical model aimed

to describe the behavior of a living tissue is usually limited

to describing its response under a specific loading

configuration.

From a mechanical point of view, all tissues are com-

posite materials. Among the common components of

biological tissues, collagen and elastin fibers have the

most important mechanical properties affecting the overall

mechanical behavior of the tissues in which they appear.

Collagen is a protein made of crimped fibrils that aggregate

into fibers. The mechanical properties of collagen fibrils

are such that each fibril can be considered a mechanical

spring and each fiber as an assemblage of springs.

The primary mechanical function of collagen fibers is to

withstand axial tension. Because of their high length-to-

diameter ratios (aspect ratio), collagen fibers are not effec-

tive under compressive loads. Whenever a fiber is pulled,

its crimp straightens, and its length increases. Like a

mechanical spring, the energy supplied to stretch the fiber

is stored and it is the release of this energy that returns

the fiber to its unstretched configuration when the applied

load is removed. The individual fibrils of the collagen

fibers are surrounded by a gel-like ground substance that

consists largely of water. Collagen fibers possess a two-

phase, solid–fluid, or viscoelastic material behavior with

a relatively high tensile strength and poor resistance to

compression.

The geometric configuration of collagen fibers and their

interaction with the noncollagenous tissue components

form the basis of the mechanical properties of biological

tissues. Among the noncollagenous tissue components,

elastin is another fibrous protein with material properties

that resemble the properties of rubber. Elastin and

microfibrils form elastic fibers that are highly extensible,

and their extension is reversible even at high strains.

Elastin fibers behave elastically with low stiffness up to

about 200% elongation followed by a short region where

the stiffness increases sharply until failure (Fig. 15.19).

The elastin fibers do not exhibit considerable plastic defor-

mation before failure, and their loading and unloading

paths do not show significant hysteresis. In summary, elas-

tin fibers possess a low-modulus elastic material property,

while collagen fibers show a higher modulus viscoelastic

material behavior.

15.7 Biomechanics of Bone

Bone is the primary structural element of the human body.

Bones form the building blocks of the skeletal system that

protects the internal organs, provides kinematic links,

provides muscle attachment sites, and facilitates muscle

actions and body movements. Bone has unique structural

and mechanical properties that allow it to carry out these

functions. As compared to other structural materials, bone

is also unique in that it is self-repairing. Bone can also alter

its shape, mechanical behavior, and mechanical properties to

adapt to the changes in mechanical demand. The major

factors that influence the mechanical behavior of bone

Fig. 15.19 Stress–strain diagram for elastin
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are the composition of bone, the mechanical properties of the

tissues comprising the bone, the size and geometry of the

bone, and the direction, magnitude, and rate of applied loads.

15.7.1 Composition of Bone

In biological terms, bone is a connective tissue that binds

together various structural elements of the body. In mechan-

ical terms, bone is a composite material with various solid

and fluid phases. Bone consists of cells and an organic

mineral matrix of fibers and a ground substance surrounding

collagen fibers. Bone also contains inorganic substances in

the form of mineral salts. The inorganic component of bone

makes it hard and relatively rigid, and its organic component

provides flexibility and resilience. The composition of bone

varies with species, age, sex, type of bone, type of bone

tissue, and the presence of bone disease.

At the macroscopic level, all bones consist of two types of

tissues (Fig. 15.20). The cortical or compact bone tissue is a

dense material forming the outer shell (cortex) of bones and

the diaphysial region of long bones. The cancellous,
trabecular, or spongy bone tissue consists of thin plates

(trabeculae) in a loose mesh structure that is enclosed by

the cortical bone. Bones are surrounded by a dense fibrous

membrane called the periosteum. The periosteum covers the

entire bone except for the joint surfaces that are covered with

articular cartilage.

15.7.2 Mechanical Properties of Bone

Bone is a nonhomogeneous material because it consists of

various cells, organic and inorganic substances with different

material properties. Bone is an anisotropic material because

its mechanical properties are different in different directions.

That is, the mechanical response of bone is dependent upon

the direction as well as the magnitude of the applied load.

For example, the compressive strength of bone is greater

than its tensile strength. Bone possesses viscoelastic (time-

dependent) material properties. The mechanical response of

bone is dependent on the rate at which the loads are applied.

Bone can resist rapidly applied loads much better than slowly

applied loads. In other words, bone is stiffer and stronger at

higher strain rates.

Bone is a complex structural material. The mechanical

response of bone can be observed by subjecting it to tension,

compression, bending, and torsion. Various tests to imple-

ment these conditions were discussed in the previous

chapters. These tests can be performed using uniform bone

specimens or whole bones. If the purpose is to investigate the

mechanical response of a specific bone tissue (cortical or

cancellous), then the tests are performed using bone

specimens. Testing a whole bone, on the other hand,

attempts to determine the “bulk” properties of that bone.

The tensile stress–strain diagram for the cortical bone is

shown in Fig. 15.21. This s–e curve is drawn using the

averages of the elastic modulus, strain hardening modulus,

ultimate stress, and ultimate strain values determined for the

human femoral cortical bone tested under tensile and com-

pressive loads applied in the longitudinal direction at a

moderate strain rate (_e ¼ 0:05 s�1). The s–e curve in

Fig. 15.21 has three distinct regions. In the initial linearly

elastic region, the s–e curve is nearly a straight line and

the slope of this line is equal to the elastic modulus (E) of the
bone, which is about 17 GPa. In the intermediate region,

the bone exhibits nonlinear elasto-plastic material behavior.

Material yielding also occurs in this region. By the offset

method discussed in Chap. 13, the yield strength of the

cortical bone for the s–e diagram shown in Fig. 15.21 can

be determined to be about 110 MPa. In the final region, the

bone exhibits a linearly plastic material behavior and the s–e
diagram is another straight line. The slope of this line is the

Fig. 15.20 Sectional view of a whole bone showing cortical and

cancellous tissues

Fig. 15.21 Tensile stress–strain diagram for human cortical bone

loaded in the longitudinal direction (strain rate _e ¼ 0:05 s�1)
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strain hardening modulus (E0) of bone tissue, which is about

0.9 GPa. The bone fractures when the tensile stress is about

128 MPa, for which the tensile strain is about 0.026.

The elastic moduli and strength values for bone are

dependent upon many factors including the test conditions

such as the rate at which the loads are applied. This visco-

elastic nature of bone tissue is demonstrated in Fig. 15.22.

The stress–strain diagrams in Fig. 15.22 for different

strain rates indicate that a specimen of bone tissue that is

subjected to rapid loading (high _e) has a greater elastic

modulus and ultimate strength than a specimen that is loaded

more slowly (low _e). Figure 15.22 also demonstrates that the

energy absorbed (which is proportional to the area under the

s–e curve) by the bone tissue increases with an increasing

strain rate. Note that during normal daily activities, bone

tissues are subjected to a strain rate of about 0.01 s�1.

The stress–strain behavior of bone is also dependent upon

the orientation of bone with respect to the direction of

loading. This anisotropic material behavior of bone is

demonstrated in Fig. 15.23. Notice that the cortical bone

has a larger ultimate strength (stronger) and a larger elastic

modulus (stiffer) in the longitudinal direction than the trans-

verse direction. Furthermore, bone specimens loaded in the

transverse direction fail in a more brittle manner (without

showing considerable yielding) as compared to bone

specimens loaded in the longitudinal direction. The ultimate

strength values for adult femoral cortical bone under various

modes of loading, and its elastic and shear moduli are listed

in Table 15.1. The ultimate strength values in Table 15.1

demonstrate that the bone strength is highest under compres-

sive loading in the longitudinal direction (the direction of

osteon orientation) and lowest under tensile loading in the

transverse direction (the direction perpendicular to the longi-

tudinal direction). The elastic modulus of cortical bone in

the longitudinal direction is higher than its elastic modulus

in the transverse direction. Therefore, cortical bone is stiffer

in the longitudinal direction than in the transverse direction.

It should be noted that there is a wide range of variation in

values reported for the mechanical properties of bone. It may

be useful to remember that the tensile strength of bone is less

than 10% of that of stainless steel. Also, the stiffness of bone

is about 5% of the stiffness of steel. In other words, for

specimens of the same dimension and under the same tensile

load, a bone specimen will deform 20 times as much as the

steel specimen.

The chemical compositions of cortical and cancellous

bone tissues are similar. The distinguishing characteristic

of the cancellous bone is its porosity. This physical differ-

ence between the two bone tissues is quantified in terms of

the apparent density of bone, which is defined as the mass of

bone tissue present in a unit volume of bone. To a certain

degree, both cortical and cancellous bone tissues can be

regarded as a single material of variable density. The mate-

rial properties such as strength and stiffness, and the

stress–strain characteristics of cancellous bone depend not

only on the apparent density that may be different for
Fig. 15.23 The direction-dependent stress–strain curves for bone

tissue

Fig. 15.22 The strain rate-dependent stress–strain curves for cortical

bone tissue

Table 15.1 Ultimate strength, and elastic and shear moduli for human

femoral cortical bone.

(1 GPa = 109 Pa, 1 MPa = 106 Pa)

LOADING MODE ULTIMATE STRENGTH

LONGITUDINAL

Tension

Compression

Shear

TRANSVERSE

Tension

Compression

133 MPa

193 MPa

68 MPa

51 MPa

133 MPa

ELASTIC MODULI, E
Longitudinal

Transverse

17.0 GPa

11.5 GPa

SHEAR MODULUS, G 3.3 GPa
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different bone types or at different parts of a single bone, but

also on the mode of loading. The compressive stress–strain

curves (Fig. 15.24) of cancellous bone contain an initial

linearly elastic region up to a strain of about 0.05.

The material yielding occurs as the trabeculae begin to

fracture. This initial elastic region is followed by a plateau

region of almost constant stress until fracture, exhibiting a

ductile material behavior. By contrast to compact bone,

cancellous bone fractures abruptly under tensile forces,

showing a brittle material behavior. Cancellous bone is

about 25–30% as dense, 5–10% as stiff, and five times as

ductile as cortical bone. The energy absorption capacity of

cancellous bone is considerably higher under compressive

loads than under tensile loads.

15.7.3 Structural Integrity of Bone

There are several factors that may affect the structural

integrity of bones. For example, the size and geometry of a

bone determine the distribution of the internal forces

throughout the bone, thereby influencing its response to

externally applied loads. The larger the bone, the larger the

area upon which the internal forces are distributed and the

smaller the intensity (stress) of these forces. Consequently,

the larger the bone, the more resistant it is to applied loads.

A common characteristic of long bones is their tubular

structure in the diaphysial region, which has considerable

mechanical advantage over solid circular structures of the

same mass. Recall from the previous chapter that the shear

stresses in a structure subjected to torsion are inversely pro-

portional with the polar moment of inertia (J) of the cross-

sectional area of the structure, and the normal stresses in a

structure subjected to bending are inversely proportional to the

area moment of inertia (I) of the cross-section of the structure.

The larger the polar and area moments of inertia of a

structure, the lower the maximum normal stresses due to

torsion and bending. Since tubular structures have larger

polar and area moments of inertia as compared to solid

cylindrical structures of the same volume, tubular structures

are more resistant to torsional and bending loads as compared

to solid cylindrical structures. Furthermore, a tubular struc-

ture can distribute the internal forces more evenly over its

cross-section as compared to a solid cylindrical structure of

the same cross-sectional area.

Certain skeletal conditions such as osteoporosis can

reduce the structural integrity of bone by reducing its appar-

ent density. Small decreases in bone density can generate

large reductions in bone strength and stiffness. As compared

to a normal bone with the same geometry, an osteoporotic

bone will deform easier and fracture at lower loads. The

density of bone can also change with aging, after periods of

disuse, or after chronic exercise, thereby changing its overall

strength. Certain surgical procedures that alter the normal

bone geometry may also reduce the strength of bone. Bone

defects such as screw holes reduce the load-bearing ability of

bone by causing stress concentrations around the defects.

Bone becomes stiffer and less ductile with age. Also with

age, the ability of bone to absorb energy and the maximum

strain at failure are reduced, and the bone behaves more like

dry bone. Although the properties of dry bone may not have

any value in orthopedics, it may be important to note that

there are differences between bone in its wet and dry states.

Dry bone is stiffer, has a higher ultimate strength, and is

more brittle than wet bone (Fig. 15.25).

15.7.4 Bone Fractures

When bones are subjected to moderate loading conditions,

they respond by small deformations that are only present

while the loads are applied. When the loads are removed,

bones exhibit elastic material behavior by resuming their

original (unstressed) shapes and positions. Large defor-

mations occur when the applied loads are high. Bone fractures

when the stresses generated in any region of bone are larger

than the ultimate strength of bone.

Fractures caused by pure tensile forces are observed in

bones with a large proportion of cancellous bone tissue.

Fig. 15.25 Stress–strain curves for dry and wet bones

Fig. 15.24 Apparent density-dependent stress–strain curves for

cancellous bone tissue
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Fractures due to compressive loads are commonly encoun-

tered in the vertebrae of the elderly, whose bones are weak-

ened as a result of aging. Bone fractures caused by

compression occur in the diaphysial regions of long bones.

Compressive fractures are identified by their oblique fracture

pattern. Long bone fractures are usually caused by torsion

and bending. Torsional fractures are identified by their spiral

oblique pattern, whereas bending fractures are usually

identified by the formation of “butterfly” fragments. Fatigue

fracture of bone occurs when the damage caused by repeated

mechanical stress outpaces the bone’s ability to repair

to prevent failure. Bone fractures caused by fatigue are com-

mon among professional athletes and dedicated joggers.

Clinically, most bone fractures occur as a result of complex,

combined loading situations rather than simple loading

mechanisms.

15.8 Tendons and Ligaments

Tendons and ligaments are fibrous connective tissues.

Tendons help execute joint motion by transmitting mechan-

ical forces (tensions) from muscles to bones. Ligaments join

bones and provide stability to the joints. Unlike muscles,

which are active tissues and can produce mechanical forces,

tendons and ligaments are passive tissues and cannot

actively contract to generate forces.

Around many joints of the human body, there is insuffi-

cient space to attach more than one or a few muscles.

This requires that to accomplish a certain task, one or a

few muscles must share the burden of generating and

withstanding large loads with intensities (stress) even larger

at regions closer to the bone attachments where the cross-

sectional areas of the muscles are small. As compared to

muscles, tendons are stiffer, have higher tensile strengths,

and can endure larger stresses. Therefore, around the joints

where the space is limited, muscle attachments to bones are

made by tendons. Tendons are capable of supporting very

large loads with very small deformations. This property of

tendons enables the muscles to transmit forces to bones

without wasting energy to stretch tendons.

The mechanical properties of tendons and ligaments

depend upon their composition which can vary considerably.

The most common means of evaluating the mechanical

response of tendons and ligaments is the uniaxial tension

test. Figure 15.26 shows a typical tensile stress–strain

diagram for tendons. The shape of this curve is the result of

the interaction between elastic elastin fibers and the

viscoelastic collagen fibers. At low strains (up to about 0.05),

less stiff elastic fibers dominate and the crimp of the collagen

fibers straightens, requiring very little force to stretch the

tendon. The tendon becomes stiffer when the crimp is

straightened. At the same time, the fluid-like ground

substance in the collagen fibers tends to flow. At higher

strains, therefore, the stiff and viscoelastic nature of the

collagen fibers begins to take an increasing portion of the

applied load. Tendons are believed to function in the body at

strains of up to about 0.04, which is believed to be their yield

strain (ey). Tendons rupture at strains of about 0.1 (ultimate

strain, eu), or stresses of about 60 MPa (ultimate stress, su).
Note that the shape of the stress–strain curve in Fig. 15.26

is such that the area under the curve is considerably small. In

other words, the energy stored in the tendon to stretch the

tendon to a stress level is much smaller than the energy

stored to stretch a linearly elastic material (with a

stress–strain diagram that is a straight line) to the same stress

level. Therefore, the tendon has higher resilience than line-

arly elastic materials.

The time-dependent, viscoelastic nature of the tendon is

illustrated in Figs. 15.27 and 15.28. When the tendon is

stretched rapidly, there is less chance for the ground sub-

stance to flow, and consequently, the tendon becomes stiffer.

The hysteresis loop shown in Fig. 15.28 demonstrates the

time-dependent loading and unloading behavior of the ten-

don. Note that more work is done in stretching the tendon

than is recovered when the tendon is allowed to relax, and

therefore, some of the energy is dissipated in the process.

The mechanical role of ligaments is to transmit forces

from one bone to another. Ligaments also have a stabilizing

Fig. 15.27 The strain rate-dependent stress–strain curves for tendon

Fig. 15.26 Tensile stress–strain diagram for tendon
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role for the skeletal joints. The composition and structure of

ligaments depend upon their function and position within the

body. Like tendons they are composite materials containing

crimped collagen fibers surrounded by ground substance.

As compared to tendons, they often contain a greater

proportion of elastic fibers that accounts for their higher

extensibility but lower strength and stiffness. The mecha-

nical properties of ligaments are qualitatively similar to

those of tendons. Like tendons, they are viscoelastic and

exhibit hysteresis, but deform elastically up to strains of

about ey ¼ 0:25 (about five times as much as the yield strain

of tendons) and stresses of about sy ¼ 5MPa. They rupture

at a stress of about 20 MPa.

Since tendons and ligaments are viscoelastic, some of the

energy supplied to stretch them is dissipated by causing the

flow of the fluid within the ground substance, and the rest of

the energy is stored in the stretched tissue. Tendons and

ligaments are tough materials and do not rupture easily.

Most common damages to tendons and ligaments occur at

their junctions with bones.

15.9 Skeletal Muscles

There are three types of muscles: skeletal, smooth, and

cardiac. Smooth muscles line the internal organs, and car-

diac muscles form the heart. Here, we are concerned with the

characteristics of the skeletal muscles, each of which is

attached, via aponeuroses and/or tendons, to at least two

bones causing and/or controlling the relative movement of

one bone with respect to the other. When its fibers contract

under the stimulation of a nerve, the muscle exerts a pulling

effect on the bones to which it is attached. Contraction is a

unique ability of the muscle tissue, which is defined as the

development of tension in the muscle. Muscle contraction

can occur as a result of muscle shortening (concentric

contraction) or muscle lengthening (eccentric contraction),

or it can occur without any change in the muscle length

(static or isometric contraction).

The skeletal muscle is composed of muscle fibers and

myofibrils. Myofibrils in turn are made of contractile

elements: actin and myosin proteins. Actin and myosin

appear in bands or filaments. Several relatively thick myosin

filaments interact across cross-bridges with relatively thin

actin filaments to form the basic structure of the contractile

element of the muscle, called the sarcomere (Fig. 15.29).

Many sarcomere elements connected in a series arrangement

form the contractile element (motor unit) of the muscle. It is

within the sarcomere that the muscle force (tension) is

generated, and where muscle shortening and lengthening

takes place. The active contractile elements of the muscle

are contained within a fibrous passive connective tissue,

called fascia. Fascia encloses the muscles, separates them

into layers, and connects them to tendons.

The force and torque developed by a muscle is dependent

on many factors, including the number of motor units within

the muscle, the number of motor units recruited, the manner

in which the muscle changes its length, the velocity of

muscle contraction, and the length of the lever arm of the

muscle force. For muscles, two different forces can be dis-

tinguished. Active tension is the force produced by the con-

tractile elements of the muscle and is a result of voluntary

muscle contraction. Passive tension, on the other hand, is the

force developed within the connective muscle tissue when

the muscle length surpasses its resting length. The net tensile

force in a muscle is dependent on the force–length

characteristics of both the active and passive components

of the muscle. A typical tension versus muscle length dia-

gram is shown in Fig. 15.30. The number of cross-bridges

between the filaments is maximum, and therefore, the active

tension (Ta) is maximum at the resting length (lo) of the

muscle. As the muscle lengthens, the filaments are pulled

apart, the number of cross-bridges is reduced and the active

tension is decreased. At full length, there are no cross-bridges

and the active tension reduces to zero. As the muscle

shortens, the cross-bridges overlap and the active tension is

again reduced. When the muscle is at its resting length or

Fig. 15.29 Basic structure of the contractile element of muscle (thick
lines represent myosin filaments, thin horizontal lines are actin

filaments, and cross-hatched lines are cross-bridges)

Fig. 15.28 The hysteresis loop of stretching and relaxing modes of the

tendon
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less, the passive (connective) component of the muscle is in

a loose state with no tension. As the muscle lengthens, a

passive tensile force (Tp) builds up in the connective tissues.

The force–length characteristic of this passive component

resembles that of a nonlinear spring. Passive tensile force

increases at an increasing rate as the length of the muscle

increases. The overall, total, or net muscle force (Tt) that is

transmitted via tendons is the sum of the forces in the active

and passive elements of the muscle. Note here that for a

given muscle, the tension–length diagram is not unique

but dependent on the number of motor units recruited.

The magnitude of the active component of the muscle

force can vary depending on how the muscle is excited,

and usually expressed as the percentage of the maximum

voluntary contraction.

The force generated by a contracting muscle is usually

transmitted to a bone through a tendon. There is a functional

reason for tendons to make the transfer of forces from

muscles to bones. As compared to tendons, muscles have

lower tensile strengths. The relatively low ultimate strength

requires muscles to have relatively large cross-sectional

areas in order to transmit sufficiently high forces without

tearing. Tendons are better designed to perform this function.

15.10 Articular Cartilage

Cartilage covers the articulating surfaces of bones at the

diarthrodial (synovial) joints. The primary function of carti-

lage is to facilitate the relative movement of articulating

bones. Cartilage reduces stresses applied to bones by increa-

sing the area of contact between the articulating surfaces and

reduces bone wear by reducing the effects of friction.

Cartilage is a two-phase material consisting of about 75%

water and 25% organic solid. A large portion of the solid

phase of the cartilage material is made up of collagen fibers.

The remaining ground substance is mainly proteoglycan

(hydrophilic molecules). Collagen fibers are relatively

strong and stiff in tension, while proteoglycans are strong

in compression. The solid–fluid composition of cartilage

makes it a viscoelastic material.

The mechanical properties of cartilage under various

loading conditions have been investigated using a number

of different techniques. For example, the response of the

human patella to compressive loads has been investigated

by using an indentation test in which a small cylindrical or

hemispherical indenter is pressed into the articulating sur-

face, and the resulting deformation is recorded (Fig. 15.31a).

A typical result of an indentation test is shown in Fig. 15.31b.

When a constant magnitude load is applied, the material

initially responds with a relatively large elastic deformation.

The applied load causes pressure gradients to occur in the

interstitial fluid, and the variations in pressure cause the fluid

to flow through and out of the cartilage matrix. As the load is

maintained, the amount of deformation increases at a

decreasing rate. The deformation tends toward an equilib-

rium state as the pressure variations within the fluid are

dissipated. When the applied load is removed (unloading

phase), there is an instantaneous elastic recovery (recoil)

that is followed by a more gradual recovery leading to com-

plete recovery. This creep–recovery response of cartilage

may be qualitatively represented by the three-parameter

viscoelastic solid model (Fig. 15.32), which consists of a

linear spring and a Kelvin–Voight unit connected in series.

Fig. 15.31 Indentation test

Fig. 15.30 Muscle force (T) versus muscle length (ℓ)

Fig. 15.32 The standard solid model has been used to represent the

creep–recovery behavior of cartilage
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Another experiment designed to investigate the response

of cartilage to compressive loading conditions is the

confined compression test illustrated in Fig. 15.33. In this

test, the specimen is confined in a rigid cylindrical die and

loaded with a rigid permeable block. The compressive load

causes pressure variations in the interstitial fluid and conse-

quent fluid exudation. Eventually, the pressure variations

dissipate and equilibrium is reached. The state at which the

equilibrium is reached is indicative of the compressive stiff-

ness of the cartilage. The compressive stiffness and resis-

tance of cartilage depend upon the water and proteoglycan

content of the tissue. The higher the proteoglycan content,

the higher the compressive resistance of the tissue.

During daily activities, the articular cartilage is subjected

to tensile and shear stresses as well as compressive stresses.

Under tension, cartilage responds by realigning the collagen

fibers that carry the tensile loads applied to the tissue.

The tensile stiffness and strength of cartilage depend on the

collagen content of the tissue. The higher the collagen con-

tent, the higher the tensile strength of cartilage. Shear stresses

on the articular cartilage are due to the frictional forces

between the relative movement of articulating surfaces.

However, the coefficient of friction for synovial joints is so

low (of the order 0.001–0.06) that friction has an insignificant

effect on the stress resultants acting on the cartilage.

Both structural (such as intraarticular fracture) and

anatomical abnormalities (such as rheumatoid arthritis and

acetabular dysplasia) can cause cartilage damage, degenera-

tion, wear, and failure. These abnormalities can change the

load-bearing ability of the joint by altering its mechanical

properties. The importance of the load-bearing ability of the

cartilage and maintaining its mechanical integrity may

become clear if we consider that the magnitude of the forces

involved at the human hip joint is about five times body

weight during ordinary walking (much higher during run-

ning or jumping). The hip contact area over which these

forces are applied is about 15 cm2 (0.0015 m2). Therefore,

the compressive stresses (pressures) involved are of the

order 3 MPa for an 85 kg person.

15.11 Discussion

Here we have covered, very briefly, the mechanical

properties of selected biological tissues. We believe that

the knowledge of the mechanical properties and structural

behavior of biological tissues is an essential prerequisite for

any experimental or theoretical analysis of their physiologi-

cal function in the body. We are aware of the fact that the

proper coverage of each of these topics deserves at least a

full chapter. Our purpose here was to provide a summary, to

illustrate how biological phenomena can be described in

terms of the mechanical concepts introduced earlier, and

hope that the interested reader would refer to more complete

sources of information to improve his or her knowledge of

the subject matter.

15.12 Exercise Problem

Problem 15.1 Complete the following definitions with

appropriate expressions.

(a) Elastic materials show time-independent material

behavior. Elastic materials deform ________ when

they are subjected to externally applied loads.

(b) Time-dependent material behavior is known as

__________.

(c) Elasticity is a solid material behavior, whereas

____________ is a fluid property and is a measure of

resistance to flow.

(d) For a viscoelatic material, stress is not only a function

of strain, but also a function of _________.

(e) _________ and _________ are basic mechanical

elements that are used to simulate elastic solid and

viscous fluid behaviors, respectively.

(f) The _________ is a viscoelastic model consisting of a

spring and a dashpot connected in a parallel

arrangement.

(g) The _________ is a viscoelastic model consisting of a

spring and a dashpot connected in a series

arrangement.

(h) The _________ is a viscoelastic model consisting of a

spring and a Kelvin–Voight solid connected in a series.

(i) A _________ test is conducted by applying a load on

the material, maintaining the load at a constant level

for some time, suddenly removing the load, and

observing the material response.

Fig. 15.33 Confined compression test. A is the rigid die, B is the

specimen, and C is the permeable block
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