
Stress and Strain 13

13.1 Basic Loading Configurations

An object subjected to an external force will move in the

direction of the applied force. The object will deform if its

motion is constrained in the direction of the applied force.

Deformation implies relative displacement of any two points

within the object. The extent of deformation will be depen-

dent upon many factors including the magnitude, direction,

and duration of the applied force, the material properties of

the object, the geometry of the object, and environmental

factors such as heat and humidity.

In general, materials respond differently to different

loading configurations. For a given material, there may be

different mechanical properties that must be considered

while analyzing its response to, for example, tensile loading

as compared to loading that may cause bending or torsion.

Figure 13.1 is drawn to illustrate different loading

conditions, in which an L-shaped beam is subjected to forces

F1, F2, and F3. The force F1 subjects the arm AB of the beam

to tensile loading. The force F2 tends to bend the arm AB.

The force F3 has a bending effect on arm BC and a twisting

(torsional) effect on arm AB. Furthermore, all of these forces

are subjecting different sections of the beam to shear

loading.

13.2 Uniaxial Tension Test

The mechanical properties of materials are established by

subjecting them to various experiments. The mechanical

response of materials under tensile loading is analyzed by

the uniaxial or simple tension test that will be discussed next.
The response of materials to forces that cause bending and

torsion will be reviewed in the following chapter.

The experimental setup for the uniaxial tension test is

illustrated in Fig. 13.2. It consists of one fixed and onemoving

head with attachments to grip the test specimen. A specimen

is placed and firmly fixed in the equipment, a tensile force

of known magnitude is applied through the moving head, and

the corresponding elongation of the specimen is measured.

A general understanding of the response of the material to

tensile loading is obtained by repeating this test for a number

of specimens made of the same material, but with different

lengths, cross-sectional areas, and under tensile forces with

different magnitudes.

Fig. 13.1 Loading modes Fig. 13.2 Uniaxial tension test
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13.3 Load-Elongation Diagrams

Consider the three bars shown in Fig. 13.3. Assume that

these bars are made of the same material. The first and

the second bars have the same length but different cross-

sectional areas, and the second and third bars have the same

cross-sectional area but different lengths. Each of these bars

can be subjected to a series of uniaxial tension tests by

gradually increasing the applied forces and measuring

corresponding increases in their lengths. If F is the magni-

tude of the applied force and Dl is the increase in length, then
the data collected can be plotted to obtain a load versus

elongation diagram for each specimen. Effects of geometric

parameters (cross-sectional area and length) on the load-

bearing ability of the material can be judged by drawing

the curves obtained for each specimen on a single graph

(Fig. 13.4) and comparing them. At a given force magnitude,

the comparison of curves 1 and 2 indicate that the larger the

cross-sectional area, the more difficult it is to deform the

specimen in a simple tension test, and the comparison of

curves 2 and 3 indicates that the longer the specimen, the

larger the deformation in tension.

Note that instead of applying a series of tensile forces to a

single specimen, it is preferable to have a number of

specimens with almost identical geometries and apply one

force to one specimen only once. As will be discussed later,

a force applied on an object may alter its mechanical

properties.

Another method of representing the results obtained in a

uniaxial tension test is by first dividing the magnitude of the

applied force F with the cross-sectional area A of the

specimen, normalizing the amount of deformation by divi-

ding the measured elongation with the original length of the

specimen, and then plotting the data on a F=A versus Dl=l
graph as shown in Fig. 13.5. The three curves in Fig. 13.4,

representing three specimens made of the same material, are

represented by a single curve in Fig. 13.5. It is obvious that

some of the information provided in Fig. 13.4 is lost in

Fig. 13.5. That is why the representation in Fig. 13.5 is

more advantageous than that in Fig. 13.4. The single curve

in Fig. 13.5 is unique for a particular material, independent of

the geometries of the specimens used during the experiments.

This type of representation eliminates geometry as one of

the variables, and makes it possible to focus attention on the

mechanical properties of different materials. For example,

consider the curves in Fig. 13.6, representing the mechanical

Fig. 13.3 Specimens

Fig. 13.4 Load-elongation diagrams Fig. 13.6 Material A is stiffer than material B

Fig. 13.5 Load over area versus elongation over length diagram
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behavior of materials A and B in simple tension. It is clear

that material B can be deformed more easily than material A

in a uniaxial tension test, or material A is “stiffer” than

material B.

13.4 Simple Stress

Consider the cantilever beam shown in Fig. 13.7a. The beam

has a circular cross-section, cross-sectional area A, welded to

the wall at one end, and is subjected to a tensile force with

magnitude F at the other end. The bar does not move, so it is

in equilibrium. To analyze the forces induced within the

beam, the method of sections can be applied by hypotheti-

cally cutting the beam into two pieces through a plane

ABCD perpendicular to the centerline of the beam. Since

the beam as a whole is in equilibrium, the two pieces must

individually be in equilibrium as well. This requires the

presence of an internal force collinear with the externally

applied force at the cut section of each piece. To satisfy

the condition of equilibrium, the internal forces must have

the same magnitude as the external force (Fig. 13.7b). The

internal force at the cut section represents the resultant of a

force system distributed over the cross-sectional area of the

beam (Fig. 13.7c). The intensity of the internal force over the

cut section (force per unit area) is known as the stress.

For the case shown in Fig. 13.7, since the force resultant at

the cut section is perpendicular (normal) to the plane of

the cut, the corresponding stress is called a normal stress.

It is customary to use the symbol s (sigma) to refer to normal

stresses. The intensity of this distributed force may or

may not be uniform (constant) throughout the cut section.

Assuming that the intensity of the distributed force at the cut

section is uniform over the cross-sectional area A, the normal

stress can be calculated using:

s ¼ F

A
: (13.1)

If the intensity of the stress distribution over the area is

not uniform, then Eq. (13.1) will yield an average normal

stress. It is customary to refer to normal stresses that are

associated with tensile loading as tensile stresses. On the

other hand, compressive stresses are those associated with

compressive loading. It is also customary to treat tensile

stresses as positive and compressive stresses as negative.

The other form of stress is called shear stress, which is a

measure of the intensity of internal forces acting parallel or

tangent to a plane of cut. To get a sense of shear stresses,

hold a stack of paper with both hands such that one hand is

under the stack while the other hand is above it. First, press

the stack of papers together. Then, slowly slide one hand in

the direction parallel to the surface of the papers while

sliding the other hand in the opposite direction. This will

slide individual papers relative to one another and generate

frictional forces on the surfaces of individual papers.

The shear stress is comparable to the intensity of the fric-

tional force over the surface area upon which it is applied.

Now, consider the cantilever beam illustrated in Fig. 13.8a.

A downward force with magnitude F is applied to its free

end. To analyze internal forces and moments, the method of

sections can be applied by fictitiously cutting the beam

through a plane ABCD that is perpendicular to the centerline

of the beam. Since the beam as a whole is in equilibrium, the

two pieces thus obtained must individually be equilibrium as

well. The free-body diagram of the right-hand piece of the

beam is illustrated in Fig. 13.8b along with the internal force

and moment on the left-hand piece. For the equilibrium of

the right-hand piece, there has to be an upward force resul-

tant and an internal moment at the cut surface. Again for the

equilibrium of this piece, the internal force must have a

magnitude F. This is known as the internal shearing force

and is the resultant of a distributed load over the cut surface

(Fig. 13.8c). The intensity of the shearing force over the cut

surface is known as the shear stress, and is commonly

denoted with the symbol t (tau). If the area of this surface

(in this case, the cross-sectional area of the beam) is A, then:

t ¼ F

A
: (13.2)

Fig. 13.7 Normal stress
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The underlying assumption in Eq. (13.2) is that the shear

stress is distributed uniformly over the area. For some cases,

this assumption may not be true. In such cases, the shear

stress calculated by Eq. (13.2) will represent an average

value.

The dimension of stress can be determined by dividing

the dimension of force ½F� ¼ ½M�½L�=½T2� with the dimension

of area ½L2�. Therefore, stress has the dimension of

½M�=½L�½T2�. The units of stress in different unit systems

are listed in Table 13.1. Note that stress has the same dimen-

sion and units as pressure.

13.5 Simple Strain

Strain, which is also known as unit deformation, is a measure

of the degree or intensity of deformation. Consider the bar in

Fig. 13.9. Let A and B be two points on the bar located at a

distance l1, and C and D be two other points located at a

distance l2 from one another, such that l1>l2. l1 and l2 are

called gage lengths. The bar will elongate when it is

subjected to tensile loading. Let Dl1 be the amount of elon-

gation measured between A and B, and Dl2 be the increase in
length between C and D. Dl1 and Dl2 are certainly some

measures of deformation. However, they depend on the

respective gage lengths, such that Dl1>Dl2. On the other

hand, if the ratio of the amount of elongation to the gage

length is calculated for each case and compared, it would be

observed that ðDl1=Dl1Þ ’ ðDl2=Dl2Þ. Elongation per unit

gage length is known as strain and is a more fundamental

means of measuring deformation.

As in the case of stress, two types of strains can be

distinguished. The normal or axial strain is associated with

axial forces and defined as the ratio of the change (increase

or decrease) in length, Dl, to the original gage length, l, and

is denoted with the symbol e (epsilon):

e ¼ Dl
l
: (13.3)

When a body is subjected to tension, its length increases,

and both Dl and e are positive. The length of a specimen

under compression decreases, and both Dl and e become

negative.

The second form of strain is related to distortions caused

by shearing forces. Consider the rectangle (ABCD) shown in

Fig. 13.10, which is acted upon by a pair of shearing forces.

Shear forces deform the rectangle into a parallelogram

(AB0C0D). If the relative horizontal displacement of the top

and the bottom of the rectangle is d and the height of the

rectangle is l, then the average shear strain is defined as the

ratio of d and l which is equal to the tangent of angle

g (gamma). This angle is usually very small. For small

angles, the tangent of the angle is approximately equal to

the angle itself. Hence, the average shear strain is equal

Table 13.1 Units of stress

System Units of stress Special name

SI N/m2 Pascal (Pa)

CGS dyn/cm2

British lb/ft2 or lb/in.2 psf or psi

Fig. 13.9 Normal strain

Fig. 13.8 Shear stress
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to angle g (measured in radians), which can be calculated

using:

g ¼ d

l
: (13.4)

Strains are calculated by dividing two quantities having

the dimension of length. Therefore, they are dimensionless

quantities and there is no unit associated with them. For most

applications, the deformations and consequently the strains

involved are very small, and the precision of the measure-

ments taken is very important. To indicate the type of

measurements taken, it is not unusual to attach units such

as cm/cm or mm/mm next to a strain value. Strains can also

be given in percent. In engineering applications, the strains

involved are of the order of magnitude 0.1% or 0.001.

Figure 13.11 is drawn to compare the effects of tensile,

compressive, and shear loading. Figure 13.11a shows a

square object (in a two-dimensional sense) under no load.

The square object is ruled into 16 smaller squares to illus-

trate different modes of deformation. In Fig. 13.11b, the

object is subjected to a pair of tensile forces. Tensile forces

distort squares into rectangles such that the dimension of

each square in the direction of applied force (axial dimen-

sion) increases while its dimension perpendicular to the

direction of the applied force (transverse dimension)

decreases. In Fig. 13.11c, the object is subjected to a pair

of compressive forces that distort squares into rectangles

such that the axial dimension of each square decreases

while its transverse dimension increases. In Fig. 13.11d,

the object is subjected to a pair of shear forces that distort

the squares into diamonds.

13.6 Stress–Strain Diagrams

It was demonstrated in Sect. 13.3 that the results of uniaxial

tension tests can be used to obtain a unique curve representing

the relationship between the applied load and corresponding

deformation for a material. This can be achieved by

dividing the applied load with the cross-sectional area (F=A)

of the specimen, dividing the amount of elongation measured

with the gage length (Dl=l), and plotting a F=A versus Dl=l
graph. Notice, however, that for a specimen under tension,

F=A is the average tensile stress s and Dl=l is the average

tensile strain e. Therefore, the F=A versus Dl=l graph of a

material is essentially the stress–strain diagram of that

material.

Different materials demonstrate different stress–strain

relationships, and the stress–strain diagrams of two or

more materials can be compared to determine which mate-

rial is relatively stiffer, harder, tougher, more ductile, and/or

more brittle. Before explaining these concepts related to the

strength of materials, it is appropriate to first analyze a

typical stress–strain diagram in detail.

Consider the stress–strain diagram shown in Fig. 13.12.

There are six distinct points on the curve that are labeled as O,

P, E, Y, U, and R. Point O is the origin of the s� e diagram,

which corresponds to the initial no load, no deformation stage.

Point P represents the proportionality limit. Between O and P,

stress and strain are linearly proportional, and the s� e curve
is a straight line. Point E represents the elastic limit. The stress

corresponding to the elastic limit is the greatest stress that can

be applied to the material without causing any permanent

deformation within the material. Thematerial will not resume

its original size and shape upon unloading if it is subjected to

stress levels beyond the elastic limit. Point Y is the yield point,
and the stress sy corresponding to the yield point is called

the yield strength of the material. At this stress level, consid-

erable elongation (yielding) can occur without a corres-

ponding increase of load. U is the highest stress point on

the s� e curve. The stress su is the ultimate strength of the

Fig. 13.10 Shear strain

Fig. 13.11 Distortions under tensile (b), compressive (c), and shear

(d) loading
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material. For some materials, once the ultimate strength is

reached, the applied load can be decreased and continued

yielding may be observed. This is due to the phenomena

called necking that will be discussed later. The last point on

the s� e curve is R, which represents the rupture or failure

point. The stress at which the rupture occurs is called the

rupture strength of the material.

For some materials, it may not be easy to determine or

distinguish the elastic limit and the yield point. The yield

strength of such materials is determined by the offset
method, illustrated in Fig. 13.13. The offset method is

applied by drawing a line parallel to the linear section of

the stress–strain diagram and passing through a strain level

of about 0.2% (0.002). The intersection of this line with the

s� e curve is taken to be the yield point, and the stress

corresponding to this point is called the apparent yield
strength of the material.

Note that a given material may behave differently under

different load and environmental conditions. If the curve

shown in Fig. 13.12 represents the stress–strain relationship

for a material under tensile loading, there may be a similar but

different curve representing the stress–strain relationship

for the same material under compressive or shear loading.

Also, temperature is known to alter the relationship between

stress and strain. For a given material and fixed mode of

loading, different stress–strain diagrams may be obtained

under different temperatures. Furthermore, the data

collected in a particular tension test may depend on the rate

at which the tension is applied on the specimen. Some of these

factors affecting the relationship between stress and strain

will be discussed later.

13.7 Elastic Deformations

Consider the partial stress–strain diagram shown in

Fig. 13.14. Y is the yield point, and in this case, it also

represents the proportionality and elastic limits. sy is the

yield strength and ey is the corresponding strain. (The s� e
curve beyond the elastic limit is not shown.) The straight line

in Fig. 13.14 represents the stress–strain relationship in the

elastic region. Elasticity is defined as the ability of a material

to resume its original (stress free) size and shape upon

removal of applied loads. In other words, if a load is applied

on a material such that the stress generated in the material is

equal to or less than sy, then the deformations that took place

in the material will be completely recovered once the applied

loads are removed (the material is unloaded).

An elastic material whose s� e diagram is a straight line

is called a linearly elastic material. For such a material, the

stress is linearly proportional to strain, and the constant of

proportionality is called the elastic or Young’s modulus of
the material. Denoting the elastic modulus with E:

s ¼ Ee: (13.5)

The elastic modulus, E, is equal to the slope of the s� e
diagram in the elastic region, which is constant for a linearly

elastic material. E represents the stiffness of a material, such

that the higher the elastic modulus, the stiffer the material.

The distinguishing factor in linearly elastic materials is

their elastic moduli. That is, different linearly elastic

materials have different elastic moduli. If the elastic

Fig. 13.13 Offset method

Fig. 13.12 Stress–strain diagram for axial loading

Fig. 13.14 Stress–strain diagram for a linearly elastic material. (↗: load-
ing, ↙: unloading)
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modulus of a material is known, then the mathematical

definitions of stress and strain (s ¼ F=A and e ¼ Dl=l) can
be substituted into Eq. (13.5) to derive a relationship

between the applied load and corresponding deformation:

Dl ¼ F l

EA
: (13.6)

In Eq. (13.6), F is the magnitude of the tensile or com-

pressive force applied to the material, E is the elastic modu-

lus of the material, A is the area of the surface that cuts the

line of action of the applied force at right angles, l is the

length of the material measured along the line of action of

the applied force, and Dl is the amount of elongation or

shortening in l due to the applied force. For a given linearly

elastic material (or any material for which the deformations

are within the linearly elastic region of the s� e diagram)

and applied load, Eq. (13.6) can be used to calculate the

corresponding deformation. This equation can be used when

the object is under a tensile or compressive force.

Not all elastic materials demonstrate linear behavior.

As illustrated in Fig. 13.15, the stress–strain diagram of a

material in the elastic region may be a straight line up to the

proportionality limit followed by a curve. A curve implies

varying slope and nonlinear behavior. Materials for which

the s� e curve in the elastic region is not a straight line are

known as nonlinear elastic materials. For a nonlinear elastic

material, there is not a single elastic modulus because the

slope of the s� e curve is not constant throughout the elastic
region. Therefore, the stress–strain relationships for nonlin-

ear materials take more complex forms. Note, however, that

even nonlinear materials may have a linear elastic region in

their s� e diagrams at low stress levels (the region between

points O and P in Fig. 13.15).

Some materials may exhibit linearly elastic behavior

when they are subjected to shear loading (Fig. 13.16). For

such materials, the shear stress, t, is linearly proportional to

the shear strain, g, and the constant of proportionality is

called the shear modulus or the modulus of rigidity, which
is commonly denoted with the symbol G:

t ¼ G g: (13.7)

The shear modulus of a given linear material is equal to

the slope of the t� g curve in the elastic region. The higher

the shear modulus, the more rigid the material.

Note that Eqs. (13.5) and (13.6) relate stresses to strains

for linearly elastic materials and are called material
functions. Obviously, for a given material, there may exist

different material functions for different modes of deforma-

tion. There are also constitutive equations that incorporate all
material functions.

13.8 Hooke’s Law

The load-bearing characteristics of elastic materials are

similar to those of springs, which was first noted by Robert

Hooke. Like springs, elastic materials have the ability to

store potential energy when they are subjected to externally

applied loads. During unloading, it is the release of this

energy that causes the material to resume its undeformed

configuration. A linear spring subjected to a tensile load will

elongate, the amount of elongation being linearly propor-

tional to the applied load (Fig. 13.17). The constant of

proportionality between the load and the deformation is

usually denoted with the symbol k, which is called the spring

constant or stiffness of the spring. For a linear spring with a

spring constant k, the relationship between the applied load

F and the amount of elongation d is:

F ¼ kd: (13.8)

By comparing Eqs. (13.5) and (13.8), it can be observed

that stress in an elastic material is analogous to the force

applied to a spring, strain in an elastic material is analogous

Fig. 13.15 Stress–strain diagram for a nonlinearly elastic material

Fig. 13.16 Shear stress versus shear strain diagram for a linearly

elastic material

13.8 Hooke’s Law 175



to the amount of deformation of a spring, and the elastic

modulus of an elastic material is analogous to the spring

constant of a spring. This analogy between elastic materials

and springs is known as Hooke’s law.

13.9 Plastic Deformations

We have defined elasticity as the ability of a material to

regain completely its original dimensions upon removal of

the applied forces. Elastic behavior implies the absence of

permanent deformation. On the other hand, plasticity implies

permanent deformation. In general, materials undergo plastic

deformations following elastic deformations when they are

loaded beyond their elastic limits or yield points.

Consider the stress–strain diagram of a material shown in

Fig. 13.18. Assume that a specimen made of the same

material is subjected to a tensile load and the stress, s, in
the specimen is brought to such a level that s>sy.
The corresponding strain in the specimen is measured as e.
Upon removal of the applied load, the material will recover

the plastic deformation that had taken place by following an

unloading path parallel to the initial linearly elastic region

(straight line between points O and P). The point where this

path cuts the strain axis is called the plastic strain, ep, that
signifies the extent of permanent (unrecoverable) shape

change that has taken place in the specimen.

The difference in strains between when the specimen is

loaded and unloaded (e� ep) is equal to the amount of elastic

strain, ee, that had taken place in the specimen and that was

recovered upon unloading. Therefore, for a material loaded

to a stress level beyond its elastic limit, the total strain is

equal to the sum of the elastic and plastic strains:

e ¼ ee þ ep: (13.9)

The elastic strain, ee, is completely recoverable upon

unloading, whereas the plastic strain, ep, is a permanent

residue of the deformations.

13.10 Necking

As defined in Sect. 13.6, the largest stress a material can

endure is called the ultimate strength of that material. Once a

material is subjected to a stress level equal to its ultimate

strength, an increased rate of deformation can be observed,

and in most cases, continued yielding can occur even by

reducing the applied load. The material will eventually fail

to hold any load and rupture. The stress at failure is called

the rupture strength of the material, which may be lower than

its ultimate strength. Although this may seem to be unrealis-

tic, the reason is due to a phenomenon called necking and

because of the manner in which stresses are calculated.

Stresses are usually calculated on the basis of the original

cross-sectional area of the material. Such stresses are called

conventional stresses. Calculating a stress by dividing the

applied force with the original cross-sectional area is conve-

nient but not necessarily accurate. The true or actual stress

calculations must be made by taking the cross-sectional area

of the deformed material into consideration. As illustrated in

Fig. 13.19, under a tensile load, a material may elongate in

the direction of the applied load but contract in the trans-

verse directions. At stress levels close to the breaking point,

the elongation may occur very rapidly and the material may

narrow simultaneously. The cross-sectional area at the

narrowed section decreases, and although the force required

to further deform the material may decrease, the force per

Fig. 13.19 NeckingFig. 13.18 Plastic deformation

Fig. 13.17 Load-elongation diagram for a linear spring
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unit area (stress) may increase. As illustrated with the dotted

curve in Fig. 13.20, the actual stress–strain curve may con-

tinue having a positive slope, which indicates increasing

strain with increasing stress rather than a negative slope,

which implies increasing strain with decreasing stress.

Also the rupture point and the point corresponding to the

ultimate strength of the material may be the same.

13.11 Work and Strain Energy

In dynamics, work done is defined as the product of force and
the distance traveled in the direction of applied force, and

energy is the capacity of a system to dowork. Stress and strain

in deformable body mechanics are, respectively, related to

force and displacement. Stress multiplied by area is equal to

force, and strain multiplied by length is displacement. There-

fore, the product of stress and strain is equal to the work done

on a body per unit volume of that body, or the internal work

done on the body by the externally applied forces. For an

elastic body, this work is stored as an internal elastic strain
energy, and it is the release of this energy that brings the body

back to its original shape upon unloading. The maximum

elastic strain energy (per unit volume) that can be stored in a

body is equal to the total area under the s� e diagram in the

elastic region (Fig. 13.21). There is also a plastic strain energy
that is dissipated as heat while deforming the body.

13.12 Strain Hardening

Figure 13.22 represents the s� e diagram of a material.

Assume that the material is subjected to a tensile force

such that the stress generated is beyond the elastic limit

(yield point) of the material. The stress level in the material

is indicated with point A on the s� e diagram. Upon

removal of the applied force, the material will follow the

path AB which is almost parallel to the initial, linear section

OP of the s� e diagram. The strain at B corresponds to the

amount of plastic deformation in the material. If the material

is reloaded, it will exhibit elastic behavior between B and A,

the stress at A being the new yield strength of the material.

This technique of changing the yield point of a material is

called strain hardening. Since the stress at A is greater than

the original yield strength of the material, strain hardening

increases the yield strength of the material. Upon reloading,

if the material is stressed beyond A, then the material will

deform according to the original s� e curve for the material.

13.13 Hysteresis Loop

Consider the s� e diagram shown in Fig. 13.23. Between

points O and A, a tensile force is applied on the material

and the material is deformed beyond its elastic limit. At A,

the tensile force is removed, and the line AB represents the

unloading path. At B, the material is reloaded, this time with

a compressive force. At C, the compressive force applied on

the material is removed. Between C and O, a second

unloading occurs, and finally thematerial resumes its original

shape. The loop OABCO is called the hysteresis loop, and the

area enclosed by this loop is equal to the total strain energy

dissipated as heat to deform the body in tension and

compression.
Fig. 13.21 Internal work done and elastic strain energy per unit

volume

Fig. 13.20 Conventional (solid curve) and actual (dotted curve)
stress–strain diagrams

Fig. 13.22 Strain hardening
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13.14 Properties Based on Stress–Strain
Diagrams

As defined earlier, the elastic modulus of a material is equal

to the slope of its stress–strain diagram in the elastic region.

The elastic modulus is a relative measure of the stiffness of

one material with respect to another. The higher the elastic

modulus, the stiffer the material and the higher the resistance

to deformation. For example, material 1 in Fig. 13.24 is

stiffer than material 2.

A ductile material is one that exhibits a large plastic

deformation prior to failure. For example, material 1 in

Fig. 13.25 is more ductile than material 2. A brittle material,

on the other hand, shows a sudden failure (rupture) without

undergoing a considerable plastic deformation. Glass is a

typical example of a brittle material.

Toughness is a measure of the capacity of a material to

sustain permanent deformation. The toughness of a material

is measured by considering the total area under its

stress–strain diagram. The larger this area, the tougher the

material. For example, material 1 in Fig. 13.26 is tougher

than material 2.

The ability of a material to store or absorb energy without

permanent deformation is called the resilience of the mate-

rial. The resilience of a material is measured by its modulus

of resiliencewhich is equal to the area under the stress–strain

curve in the elastic region. The modulus of resilience is

equal to syey=2 or s2y=2E for linearly elastic materials.

Although they are not directly related to the stress–strain

diagrams, there are other important concepts used to describe

material properties. A material is called homogeneous if its

properties do not vary from location to location within the

material. A material is called isotropic if its properties are

independent of direction or orientation. A material is called

incompressible if it has a constant density.

13.15 Idealized Models of Material Behavior

Stress–strain diagrams are most useful when they are

represented by mathematical functions. The stress–strain

diagrams of materials may come in various forms, and it

may not be possible to find a single mathematical function to

represent them. For the sake of mathematical modeling and

the analytical treatment of material behavior, these diagrams

can be simplified. Some of these diagrams representing

certain idealized material behavior are illustrated in

Fig. 13.27.

A rigidmaterial is one that cannot be deformed even under

very large loads (Fig. 13.27a). A linearly elastic material is

one for which the stress and strain are linearly proportional,

with the modulus of elasticity being the constant of

proportionality (Fig. 13.27b). A rigid-perfectly plastic mate-

rial does not exhibit any elastic behavior, and once a critical

stress level is reached, it will deform continuously and

permanently until failure (Fig. 13.27c). After a linearly

elastic response, a linearly elastic-perfectly plastic

material is one that deforms continuously at a constant

stress level (Fig. 13.27d). Figure 13.27e represents the

stress–strain diagram for rigid-linearly plastic behavior.

Fig. 13.25 Material 1 is more ductile and less brittle than 2

Fig. 13.24 Material 1 is stiffer than material 2

Fig. 13.26 Material 1 is tougher than material 2

Fig. 13.23 Hysteresis loop
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The stress–strain diagram of a linearly elastic-linearly
plastic material has two distinct regions with two different

slopes (bilinear), in which stresses and strains are linearly

proportional (Fig. 13.27f).

13.16 Mechanical Properties of Materials

Table 13.2 lists properties of selected materials in terms of

their tensile yield strengths (sy), tensile ultimate strengths

(su), elastic moduli (E), shear moduli (G), and Poisson’s

ratios (v). The significance of the Poisson’s ratio will be

discussed in the following chapter. Note that mechanical

properties of a material can vary depending on many factors

including its content (e.g., in the case of steel, its carbon

content) and the processes used to manufacture the material

(e.g., hard rolled, strain hardened, or heat treated). As will be

discussed in later chapters, biological materials exhibit time-

dependent properties. That is, their response to external

forces depends on the rate at which the forces are applied.

Bone, for example, is an anisotropic material. Its response to

tensile loading in different directions is different, and

different elastic moduli are established to account for its

response in different directions. Figure 13.28 illustrates the

tensile stress-strain diagrams of a few materials. Steel and

aluminum are relatively stiff and have high ultimate

strengths. Glass and dry bone are brittle. Wet bone has the

lowest ultimate strength and elastic modulus. Therefore, the

values listed in Table 13.2 are some averages and ranges,

and are aimed to provide a sense of the orders of magnitude

of numbers involved.

13.17 Example Problems

The following examples will demonstrate some of the uses

of the concepts introduced in this chapter.

Example 13.1 A circular cylindrical rod with radius

r ¼ 1.26 cm is tested in a uniaxial tension test (Fig. 13.29).

Before applying a tensile force of F ¼ 1,000 N, two points

A and B that are at a distance l0 ¼ 30 cm (gage length) are

marked on the rod. After the force is applied, the distance

between A and B is measured as l1 ¼ 31:5 cm.

Determine the tensile strain and average tensile stress

generated in the rod.

Table 13.2 Average mechanical properties of selected materials

Material Yield strength sy (MPa) Ultimate strength su (MPa) Elastic modulus E (GPa) Shear modulus G (MPa) Poisson’s ratio V

Muscle – 0.2 – – 0.49

Tendon – 70 0.4 – 0.40

Skin – 8 0.5 – 0.49

Cortical bone 80 130 17 3.3 0.40

Glass 35–70 – 70–80 – –

Cast iron 40–260 140–380 100–190 42–90 0.29

Aluminum 60–220 90–390 70 28 0.33

Steel 200–700 400–850 200 80 0.30

Titanium 400–800 500–900 100 45 0.34

Fig. 13.28 Gross comparison of stress–strain diagrams of selected

materials

Fig. 13.27 Idealized models of material behavior
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