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Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a
significant clinical challenge, largely due to the need for mechanically competent scaffold systems for
grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-
co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for
ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for
fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic
fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated
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Liggm;nt ) b £ ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed
gias;;ctt’;?b ast growth factor but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced

hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like
cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The
results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation
of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition
to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue
engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli
on stem cell differentiation.

© 2013 Published by Elsevier Ltd.

1. Introduction and Webster, 2003). Furthermore, these grafts lack a functional

tendon-bone interface, normally present in a bone-patellar ten-

The anterior cruciate ligament (ACL) is the primary knee joint
stabilizer and is the most frequently injured ligament of the knee,
with upwards of 100,000 reconstruction procedures performed
annually in the United States (United States Department of Health
and Human Services, 1996; Marrale et al., 2007). Due to the limited
healing capacity of the ACL, surgical intervention is required to
restore normal knee function in the event of injury (Bray et al.,
2002). The bone-patellar tendon-bone (BPTB) autograft is consid-
ered to be the gold standard for this procedure but its use often
results in donor site morbidity and anterior knee pain (Beynnon
et al., 2002; Barrett et al., 2002). Hamstring tendon autografts have
been used as alternatives for ACL replacement but frequently
result in hamstring muscle weakness and bone tunnel enlarge-
ment, among other complications (Clatworthy et al., 1999; Feller
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don-bone graft, and must be mechanically fixed to the tibial and
femoral bone tunnels resulting in insufficient integration with the
subchondral bone, the primary cause of graft failure (Kurosaka
et al., 1987; Robertson et al., 1986). Synthetic grafts have also been
evaluated for ACL reconstruction but have shown limited success,
largely due to their insufficient mechanical strength and the
accumulation of wear particles in the joint capsule which can
result in associated morbidity, such as synovitis (Richmond and
Weitzel, 2010; Legnani et al., 2010; Ventura et al., 2010).

Recent studies have shown that tissue engineering is a promis-
ing method by which musculoskeletal tissues can be regenerated
(Langer and Vacanti, 1993; Laurencin et al., 1999). For the purpose
of ligament tissue engineering, various polymers, both natural
(Fan et al., 2009; Horan et al., 2009; Tischer et al., 2007; Noth et al.,
2005; Altman et al., 2002a) and synthetic (Freeman et al., 2009;
Van et al., 2009; Shao et al., 2009; Fan et al., 2008; Cooper et al.,
2007, 2005; Lu et al., 2005; Bourke et al., 2004; Lin et al., 1999;
Amis et al., 1988, 1992), have been investigated to replace the ACL
with promising results. Our long term goal is to develop a
functional and integrative scaffold for ACL tissue engineering. To
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this end, the ideal scaffold for ACL reconstruction should be
biocompatible so as not to elicit an adverse biological response,
biodegradable to be replaced by new tissue formation, exhibit
physiologically relevant mechanical properties and should pro-
mote the formation of a ligamentous tissue matrix (Cooper et al.,
2005). Guided by these design criteria, this study sought to
evaluate the potential of a poly(lactide-co-glycolide) nanofiber-
based scaffold for ligament tissue engineering. Nanofibers are
considered to be advantageous for ligament tissue engineering
because of their superior biomimetic potential and physiological
relevance. Such scaffolds have been previously investigated for
applications in bone (Yoshimoto et al., 2003; Garreta et al., 2007),
meniscus (Baker and Mauck, 2007), intervertebral disk (Nerurkar
et al.,, 2007), cartilage (Li et al., 2003), ligament (Lee et al., 2005)
and tendon (Moffat et al., 2009) tissue engineering with promising
results. The primary advantage of nanofiber scaffolds is that they
can be engineered to resemble the native ligament extracellular
matrix, and designed to exhibit high aspect ratio, surface area,
permeability and porosity. Additionally, fiber organization and
alignment can be readily controlled during fabrication (Pham
et al., 2006; Murugan and Ramakrishna, 2007), thereby allowing
for tailored structural and material properties suitable for the
demands of the anterior cruciate ligament.

It has been well established that constructs containing rele-
vant cell types can be utilized to augment neo-tissue formation
on tissue engineered scaffolds. Cooper et al. (2005) demonstrated
that the unique response of primary ligament fibroblasts is the
most desirable for ACL tissue engineering, however clinically,
autologous ligament fibroblasts are difficult to obtain. Addition-
ally, there are no unique markers which can be used to readily
distinguish ligament fibroblasts from other conventional tissue
fibroblasts for the purpose of in vitro selection and purification.
As a result, mesenchymal stem cells (MSC) have emerged as a
promising cell source for tissue engineering (Pittenger et al.,
1999). These cells have been shown to respond to a variety of
stimuli, both chemical (Pittenger et al., 1999) and mechanical
(Altman et al., 2002b), and are capable of differentiating into
chondrocytes (Barry et al., 2001), osteoblasts (Toquet et al., 1999)
and fibroblasts (Moreau et al., 2005). In addition, they can be
routinely harvested via bone marrow biopsy techniques and are
able to maintain their differentiation capabilities even after long
term culture (Pittenger et al., 1999).

Despite the versatility of MSCs for tissue engineering purposes,
standardized methods to differentiate these cells towards a
fibroblastic lineage are not well established. To this end, several
groups have demonstrated that mechanical stimulation can be
used to drive fibroblastic differentiation of MSCs. Among the
earliest to evaluate fibrogenic differentiation of MSC were Altman
et al. (2002b) who demonstrated that MSCs could be induced into
a fibroblastic phenotype when seeded in type I collagen gels and
subjected to a combination of tensile and rotational strain.
Specifically, It was reported that the application of mechanical
stress upregulated the expression of ligament fibroblast markers,
resulted in the production of type III collagen and guided cell
alignment in the direction of applied load. Studies performed by
Butler et al. evaluating a range of mechanical stimulation para-
meters using a type I collagen sponge system have similarly
demonstrated that tensile strain can upregulate the expression
of fibroblastic markers and enhance MSC matrix deposition
(Nirmalanandhan et al., 2008; Juncosa-Melvin et al., 2006; Butler
et al., 2007; Butler et al., 2004). Recently, we reported that the
application of dynamic mechanical stimulation to human MSCs
cultured on aligned nanofiber scaffolds results in fibroblastic
differentiation and the production of a ligament-like matrix
(Subramony et al., 2013). Mechanical loading resulted in the
upregulation of several fibroblastic genes including type III

collagen, fibronectin, tenascin-C and scleraxis while also resulting
in the production of a matrix rich in types I and III collagen.

To augment ligament engineering strategies, methods to
further enhance MSC response and biosynthesis have been
explored in order to facilitate the formation of functional ligament
tissue. Mitogens such as the transforming growth factor-beta
(TGF-B) family, basic fibroblast growth factor (bFGF) and epidermal
growth factor (EGF) have been shown to induce proliferation both
in vitro and in vivo for cell types including fibroblasts and MSCs
and have also been shown to affect MSC differentiation and
biosynthesis. In particular, bFGF has been shown to maintain
MSC differentiation potential, stimulate proliferation, and induce
fibroblastic differentiation. Studies performed by Hankemeier
et al. (2005) demonstrated that low-dose (3 ng/ml) bFGF increased
MSC proliferation as measured after 7 days and, on days 14 and 28,
upregulated the expression of type I and III collagen, fibronectin
and smooth muscle actin. Furthermore, chemical stimulation has
been shown to synergistically enhance cell response when com-
bined with mechanical stimulation. For example, Moreau et al.
(2008) evaluated the sequential application of biochemical and
mechanical stimulation to MSCs cultured on silk fiber-based
scaffolds. It was reported that stimulating cells with bFGF or EGF
for five days prior to the application of mechanical load modulated
matrix protein expression and cell activity.

Building upon these observations, bFGF was selected for further
investigation to enhance MSC-based ligament engineering on a
nanofiber scaffold system. Specifically, the objective of this study is
to evaluate the synergistic effect of chemical and mechanical
stimulation on the fibroblastic differentiation of human MSCs
when seeded on nanofiber scaffolds. It is hypothesized that
chemical priming of hMSCs with bFGF prior to the application of
mechanical stimulation will enhance hMSC matrix production and
upregulate the expression of relevant fibroblastic genes.

2. Materials and methods
2.1. Nanofiber scaffold fabrication

Aligned nanofiber scaffolds composed of PLGA (85:15, M,y=123.6 kDa; Lakeshore
Biomaterials, Birmingham, AL) were produced using electrospinning (Reneker and
Chun, 1996; Moffat et al., 2009). Briefly, PLGA scaffolds were fabricated by producing a
solution composed of 35% PLGA (v/v) in 55% N,N-dimethylformamide (Sigma-Aldrich,
St. Louis, MO) and 10% ethyl alcohol. The solution was loaded into a syringe with an
18.5-gauge stainless steel blunt tip needle and electrospun at 8-10 kV and 1 mL/hour
using a custom electrospinning device. Aligned fibers were produced by electrospin-
ning onto a custom rotating mandrel (20 m/s) with polymer dispensation via a syringe
pump (Harvard Apparatus, Holliston, MA; 1 ml/hr).

2.2. Cells and cell culture

Human mesenchymal stem cells (MSC) were obtained commercially (Lonza,
Walkersville, MD) and maintained in culture with DMEM containing 10% fetal
bovine serum (FBS, embryonic stem cell certified, Atlanta Biologicals, Atlanta, GA),
1% penicillin-streptomycin, 1% non-essential amino acids, 0.1% amphotericin B and
0.1% gentamicin. Cells were cultured to 80% confluence and then passaged using
0.25% trypsin/1 mM ethylenediaminetetraacetate (EDTA) and re-plated at a density
of 5 x 10° cells/cm?. Passage 2 cells were used for scaffold seeding.

All studies were performed using low-serum medium as adapted from
previously published studies. This medium was identical to MSC maintenance
media but contained 5% FBS and was utilized for the duration of the culture period.
To evaluate chemical stimulation, the low-serum medium was supplemented with
10 ng/mL bFGF (Invitrogen).

Scaffolds were secured in a custom bioreactor to apply uniaxial tensile strain.
Briefly, electrospun scaffolds (5 x 6 cm?) were excised after fabrication and subse-
quently sterilized via ultraviolet irradiation (15 min/side). Scaffolds were secured in
loading cartridges via Teflon clamps, sectioned into 5cmx 1 strips and pre-
incubated in culture medium at 37 °C and 5% carbon dioxide for 16 h. Cells were
seeded on the scaffolds at a density of 3 x 10% cells/cm? and allowed to attach for
15 min before the addition of culture medium.
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2.3. Cell attachment, alignment and proliferation

Cell viability and morphology (n=3/group) was evaluated using live/dead
staining (Invitrogen, Carlsbad, CA) following the manufacturer's suggested protocol.
The samples were imaged under confocal microscopy (Leica TCS SP5, Bannockburn, IL)
at excitation wavelengths of 488 nm and 594 nm. Cell penetration was evaluated by
taking a z-series of confocal images over a depth of 20 pm, equivalent to 15 to 20
layers of nanofibers. Total DNA content was measured using the PicoGreen dsDNA
assay (Invitogen). At each time point, the samples (n=5/group) were homogenized
in 0.1% Triton-X (Sigma-Aldrich) and subjected to 20 s of ultrasonication at 5 W.
Fluorescence was measured using a microplate reader (Tecan) at an excitation
wavelength of 485 nm and an emission wavelength of 535 nm. A standard curve
was derived and used to correlate DNA concentration to fluorescence intensity, and
cell number was determined based on a conversion factor of 8 pg DNA/cell
(Lu et al., 2005).

24. Matrix production

Total collagen content per sample (n=5/group) was calculated using the Sircol
Collagen Assay. The assay was performed following a 16-h sample digestion in
Papain (Sigma-Aldrich) to solubilize extracellular matrix (ECM) proteins. Absor-
bance was measured using a microplate reader (Tecan) at 555 nm. A standard curve
was generated and used to correlate total collagen content to absorbance.

Collagen penetration was also visualized using picrosirius red staining of frozen
sections (n=2/group) after 28 days of culture. Briefly, after fixation, samples were
embedded in 5% polyvinyl alcohol (PVA, Sigma-Aldrich) and 7-micrometer thick
sections (spanning the depth and width of the scaffold) were obtained using a
cryostat (Hacker-Bright OTF model, Hacker Instruments and Industries, Winnsboro,
SC). Collagen distribution was visualized with picrosirius red staining under light
microscopy (Axiovert 25, Zeiss).

2.5. Gene expression

Gene expression (n=5/group) was measured using quantitative real-time
reverse transcriptase polymerase chain reaction at 1, 7, 14 and 28 days. Total RNA
was isolated using the Trizol extraction method (Invitrogen). Isolated RNA was then
reverse-transcribed into complementary DNA using the SuperScript First-Strand
Synthesis System (Invitrogen), and the cDNA product was amplified using recom-
binant Tag DNA polymerase (Invitrogen). Expression of fibroblastic markers type I
collagen, type III collagen, fibronectin tenascin-C, tenomodulin and scleraxis was
determined. GAPDH served as the house-keeping gene. All primer sequences are
based on published studies (Subramony et al., 2013). All genes were amplified for
50 cycles in a thermocycler (Bio-Rad iCycler, Hercules, CA) with a fluorescent probe
(SYBR Green, Invitrogen). Quantitative analysis of gene expression was performed
using the delta-delta CT method.

2.6. Mechanical properties

Mechanical properties of the loaded and unloaded scaffolds (n=5 samples/
group) were determined at 1, 7, 14 and 28 days after priming. At each time point,
samples were tested to failure under uniaxial tension. Scaffolds were secured with

(+) bFGF

custom clamps tested to failure at a strain rate of 5 mm/min (Instron, Model 8841,
Norwood, MA) with an average gauge length of 3 cm. Samples were evaluated to
failure at a strain rate of 5 mm/min with load applied in the direction of fiber
alignment. Scaffold yield strength and ultimate tensile stress were determined, and
elastic modulus was calculated from the linear region of the stress—strain curve.

2.7. Experimental design and bioreactor culture

The effect of exogenous bFGF stimulation on MSC response was first evaluated
in a 2-week study in which cell viability, proliferation, matrix deposition and
differentiation were assessed. Subsequently, a 4-week study was conducted in
which MSCs were primed statically for 5 days with bFGF and then subjected to
dynamic tensile stimulation in a custom bioreactor. Loaded samples were subjected
to 1% strain at 1 Hz for 90 min twice daily and evaluated over a period of 28 days.
Control scaffolds, cultured in identical bioreactor cartridges, were subjected to the
same growth factor priming regimen without subsequent mechanical stimulation.

2.8. Statistical analysis

Results are presented in the form of mean + standard deviation, with n equal to
the number of samples per group. Two-way ANOVA was used to determine the
effects of chemical stimulation and mechanical loading on cell proliferation, matrix
deposition, gene expression and mechanical properties. The Tukey-Kramer post-
hoc test was used for all pair-wise comparisons and significance was attained at
p < 0.05. Statistical analyses were performed with JMP IN (4.0.4, SAS Institute, Inc.,
Cary, NC).

3. Results
3.1. MSC response to chemical stimulation

Cell viability and attachment morphology were visualized
using confocal microscopy (Fig. 1). The MSCs displayed an elon-
gated fibroblastic morphology that conformed to the alignment of
the underlying nanofiber scaffold. Similarly viable cells were
observed both with and without the treatment of bFGF. In terms
of cell growth, by day 7, a significantly greater number of cells
were measured for the group subjected to bFGF stimulation (Fig.1).
The total number of cells was also significantly greater than that
measured after 1 day of culture for both groups. After 14 days of
culture, there remained significant differences in number of cells
present in the control and bFGF stimulated group. Total collagen
deposition was evaluated for both groups over time, and found to
be similar at day 1 with a significant increase in the bFGF
stimulated group after 7 days of culture (Fig. 1). A significantly
greater amount of collagen was measured on scaffolds subjected to
30
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Fig. 1. Effect of bFGF on hMSC proliferation and matrix production. Treatment with exogenous bFGF resulted in significantly greater cells on scaffolds after 7 days of culture.
Growth factor treatment also resulted in a significant increase in matrix deposition after 14 days of culture.



2192 S.D. Subramony et al. / Journal of Biomechanics 47 (2014) 2189-2196

10 Type |l Collagen

c 9 4 mcontrol
S 8%m(+)bFGF
a *
4 7
u% 6
T 5
N 4
g 3
]
> 2

1

0

Day 1 Day 7 Day 14
10

9 Fibronectin
c @Control
2 4@ bFGF
n 7
g
g ° *
T 5
N 4
g 3
S 2
4

1

0

Day 1 Day 7 Day 14

10 Type Il Collagen

9
c @Control
o 8
o 7 @(+) bFGF
2
E 6
g 5 *
N 4
g 3
6
2 2

1

(1]

Day 1 Day 7 Day 14
10

9 Tenascin-C
c @Control
o 8
@ 7 @(+) bFGF -
e
E 6
B 5
N 4
g 3
S 2
4

1

0

Day 1

Day 7

Day 14

Fig. 2. Effect of bFGF on hMSC differentiation. Growth factor treatment resulted in the upregulation of types I and III collagen, fibronectin and tenascin-C. In contrast, the

mean expression of scleraxis and tenomodulin decreased over time.

bFGF stimulation after 14 days. No significant change in total
collagen was measured over time in the control group.

Differentiation of MSCs in both groups was assessed over the 14
day culture period by measuring the expression of types I and III
collagen, fibronectin, tenascin-C, scleraxis and tenomodulin
(Fig. 2). Significant changes in gene expression occurred only after
14 days of culture for the bFGF stimulation group. Specifically,
types I and III collagen, fibronectin and tenascin-C were all
upregulated after 14 days of chemical stimulation as compared
to the control group. The expression of these genes did not
change over time in the control group. In both the control and
bFGF stimulated groups, the mean expression of scleraxis and
teomoudlin decreased over time albeit no significant change was
measured.

3.2. MSC response to sequential chemical and mechanical
stimulation

After determining the effect of chemical stimulation on MSC
response, a 4-week study was conducted to assess MSC response
to sequential chemical and mechanical stimulation. Confocal
microscopy of cells seeded revealed no differences in cell viability
or morphology between the loaded and unloaded control group as
cells aligned in the direction of the underlying nanofibers and
remained viable over the duration of the study (Fig. 3). A
significant increase in total cell number was observed after 7 days
of culture for both the loaded and unloaded groups. Total cell
number on scaffolds was significantly greater in the loaded group
after 7 days of mechanical stimulation, as compared to unloaded
controls. No significant difference between groups was measured
after 14 days, though a significantly greater number of cells were
once again measured in the loaded group after 28 days.

Matrix deposition was evaluated both quantitatively, to deter-
mine total collagen content, and qualitatively, to evaluate matrix

morphology and penetration (Fig. 3). Total collagen deposition
increased over the duration of the culture period with significantly
greater collagen deposited in the loaded group as compared to
unloaded controls by day 28. In addition, histological analysis of
matrix deposition via Picrosirius Red staining revealed deeper
matrix penetration into loaded scaffolds after four weeks of culture.

To evaluate MSC differentiation, the expression of several key
fibroblastic genes was measured using quantitative PCR. In the
unloaded group, type I collagen expression was unregulated
significantly at 7 days after the priming culture period but
decreased significantly after 28 days. In contrast, type I collagen
was upregulated to a greater extent in the loaded group after
7 days of mechanical stimulation and remained elevated after 28
days. The expression of type III collagen was significantly upregu-
lated after 14 days in both groups though the expression levels on
mechanically stimulated scaffolds were significantly higher at both
14 and 28 days. Fibronectin expression increased over time in both
the unloaded and loaded groups with expression levels remaining
similar regardless of the application of mechanical stimulation
post chemical priming. Tenascin-C expression increased over time
in both groups over the first 14 days following priming. Interest-
ingly, a significant decrease in tenascin-C expression was mea-
sured in the unloaded group after 28 days whereas the expression
level was maintained with mechanical stimulation. Expression of
scleraxis remained similar in both groups over the duration of the
study; however the expression of tenomodulin increased signifi-
cantly after 28 days of loading (Fig. 4).

Scaffold mechanical properties were determined over the
duration of the study via uniaxial tensile testing. No differences
in mechanical properties were measured between the unloaded
and loaded groups in terms of elastic modulus, yield strength,
ultimate tensile strength or ductility. A significant decrease in
elastic modulus and ductility were observed after 28 days of
culture in both groups (Fig. 5).
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upregulation of types I and III collagen, tenascin-C and tenomodulin expression.

4. Discussion

The long-term goal of this study is to engineer a biomimetic,
functional scaffold system for anterior cruciate ligament recon-
struction. This study focuses on the differentiation of mesenchy-
mal stem cells into fibroblast-like cells on nanofiber scaffolds
using a combination of chemical and mechanical stimuli. In this
study, the effects of treating MSCs seeded on nanofibers with bFGF
alone and also sequentially with bFGF followed by dynamic tensile

strain were systematically investigated. It is observed that bFGF
stimulation alone can enhance MSC proliferation and matrix
deposition, while mechanical stimulation can synergistically
enhance these effects to drive MSCs towards a fibroblastic pheno-
type. Based on these findings, it is apparent that combinatorial
stimulation techniques represent promising strategies to engineer
ligament tissue in vitro.

In this study, biochemical stimulation of MSCs with bFGF
resulted in an increase in the total number of cells and collagen
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on nanofiber meshes after 14 days as well as an increase in the
expression of types I and III collagen, fibronectin and tenascin-C. It
has previously been established that bFGF is a mitogen which can
enhance the proliferation of MSCs. Pitaru et al. (1993) reported
that bFGF in conjunction with osteogenic medium containing
dexamethasone stimulated proliferation. Hankemeier et al.
(2005) also reported that bFGF stimulation results in dose-
dependent effects on MSCs and low doses (3 ng/ml) stimulated
cell proliferation while upregulating the expression types I and III
collagen, fibronectin and alpha-smooth muscle actin («-SMA). In
contrast, high doses (30 ng/ml) decreased proliferation and ECM
protein expression. The dose of bFGF used in this study (10 ng/ml)
is closer in magnitude to the low-dose condition. In addition, an
increase in total collagen was observed on nanofibers with
chemical stimulation as compared to unstimulated controls after
14 days. This difference is likely due to the increased number of
cells, as normalizing collagen content per-cell indicated no differ-
ence in per-cell collagen production. Previous groups have
reported similar findings when utilizing bFGF to stimulate MSCs
on tissue engineered scaffold systems. For example, Sahoo et al.
(2010) extended upon this and evaluated the incorporation of
bFGF into a silk/PLGA hybrid fiber scaffold for ligament tissue
engineering. Local release from the biohybrid scaffold resulted in
an increase in cell number and total collagen and also increased
scaffold mechanical properties after three weeks of culture in vitro.

Based upon the ability of bFGF to enhance cell response and
elicit the upregulation of fibroblast-related matrix proteins, che-
mical priming of MSCs with bFGF prior to mechanical stimulation
was investigated. Notably, in this study, it was shown that
applying mechanical stimulation following chemical priming
resulted in a greater number of cells and total collagen present
on nanofiber meshes after 28 days, as compared to applying a
bFGF priming regimen alone. These findings indicate that mechan-
ical stimulation can synergistically enhance cell proliferation and
biosynthetic response on nanofibers. In addition, mechanical
stimulation maintained the expression of types I and III collagen

over the four week period following priming. This observation
suggests that chemical stimulation alone may not lead to cells fully
differentiating into a fibroblastic phenotype, whereas mechanical
stimulation could maintain differentiation or potentially result in
cells committing to fibrogenesis. Interestingly, combined mechan-
ical and chemical stimulation resulted in the upregulation of
tenomodulin 28 days after chemical priming. Tenomodulin is an
anti-angiogenic transmembrane protein that has been shown to be
predominantly expressed in tendons and ligaments. While pre-
vious work evaluating mechanical stimulation without chemical
priming of MSCs on nanofibers did not show any effect on
tenomodulin expression, this finding indicates that bFGF priming
may result in MSCs further differentiating towards a ligament or
tendon fibroblast phenotype.

The effect of combined bFGF and mechanical stimulation has
been previously investigated on other tissue engineered constructs
with similar results. Petrigliano et al. (2007) reported on the
development of a bFGF-coated, porous polycaprolactone-based
scaffold. It was shown that bone marrow stromal cells subjected
to both chemical and mechanical stimulation resulted in the
greatest upregulation of types I and III collagen and tenascin-C.
Moreau et al. (2008) demonstrated that bFGF priming followed by
mechanical stimulation enhanced matrix development and better
supported overall tissue development on silk-based scaffolds, as
compared to EGF priming.

It has also been reported that mechanical stimulation may
result in increased cell responsiveness to growth factors, poten-
tially due to mechanical forces initiating enhanced matrix produc-
tion and remodeling. In a study performed by Shin et al. (2004),
bFGF signaling was investigated as a mechanotransduction path-
way for human umbilical vein endothelial cells (HUVEC) subjected
to cyclic pressure. It was shown that the enhanced proliferation of
cells was associated with rapid tyrosine phosphorylation of the
bFGF receptor, fibroblast growth receptor 2 (FGFR-2), but not with
increased synthesis of bFGF. Vincent et al. (2002, 2004) also
demonstrated that cyclic loading of porcine cartilage resulted in
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the rapid activation of the bFGF-dependent extracellular signal-
regulated kinase (ERK) mitogen-activated protein (MAP) kinase
pathway. These findings collectively implicate bFGF in mechanical
signaling and suggest that priming of cells with this factor may
increase cell response to mechanical stimulation.

Sequential chemical and mechanical stimulation resulted in no
significant difference in nanofiber mesh mechanical properties as
compared to chemical priming alone. While it is emphasized that
post in vitro culture, the resultant nanofiber mechanical properties
remain within range of those of ligaments and tendons, it is likely
that longer-term culture, a higher bFGF dose or the use of multiple
factors to enhance matrix deposition may be necessary in order for
the cells to produce sufficient ECM to further augment nanofiber
mesh mechanical properties. For example, an increase in mechan-
ical properties of cell-seeded nanofiber scaffolds was only
observed after 10 weeks of in vitro culture (Baker and Mauck,
2007). In addition to bFGF, other growth factors, such as trans-
forming growth factor-g (Moreau et al., 2005; Jenner et al., 2007)
or growth/differentiation factor-5 (Jenner et al., 2007; James et al.,
2011), may be able to further enhance cell response, either
simultaneously or in sequence, as these proteins have been shown
to promote MSC biosynthesis as well as ligament and tendon
tissue formation.

Moreover, the temporal optimizations of chemical and
mechanical stimulation on MSC response, as well as those of dose,
priming duration and variations in mechanical stimulation para-
meters can be used to enhance and maintain MSC differentiation
into fibroblast-like cells on nanofiber scaffolds. The findings of this
study represent a foundation upon which these future studies can
be performed and demonstrate that combined stem cell stimula-
tion strategies (chemical and mechanical) on nanofiber-based
scaffolds is a promising approach for stem cell-mediated ligament
tissue engineering.

5. Conclusions

The study investigated the effects of chemical and mechanical
stimulation on stem cell differentiation, and the results demon-
strate that bFGF priming coupled with physiologically relevant
tensile loading enhance MSC differentiation into ligament
fibroblast-like cells. While bFGF priming increases cell prolifera-
tion, mechanical stimulation of the MSCs on the aligned nanofiber
scaffold promotes fibroblastic induction of these cells.
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