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Introduction
Tissues with different material and biological properties are

connected to one another through interfaces, which can be generally
categorized as soft-to-soft tissue interfaces (muscle-tendon, etc.), soft-
to-hard tissue interfaces (cartilage-bone, tendon-bone, etc.) and hard-
to-hard tissue interfaces (dentin-enamel, etc.). Since these interfaces
merge biological materials, i.e., tissues, having distinct composition,
structure and function, they possess complexities associated with their
hierarchical structures, and when injured their healing/regeneration
pathways follow more intricate phenomena compared to single tissues
making up the interfaces. Findings reveal that injuries related to tissues
connected in series occur mostly at the interfaces due to the mismatch
between material properties of individual tissues. Therefore, interface
tissue engineering has recently attracted significant attention from
academia to be able to understand the mechanism of cell-materials
interactions relevant to interfaces. This paper reviews the structure,
composition and function of cartilage-bone interface in conjunction
with the scaffold and cell options for its regeneration.

Cartilage-Bone Interface
Osteoarthritis (OA) is a degenerative joint disease seen at the

cartilage-bone interface in the knee. It is characterized by the lesions in
the articular cartilage at early stages and complete loss of function of
the knee joint at advanced stages [1]. OA is known as one of the most
common joint-related traumas, and it is reported that, between 2010
and 2012, around 52.5 million adults (18 years and over) were
diagnosed with OA and that every 1 of 2 adults over 65 years suffered
from OA in the US, only [2]. Unfortunately, widely used clinical
approaches (lavage, periosteal grafts, subchondral drilling,
microfracture, mozaicplasty, etc.) are far from integrating cartilage
tissue to bone biologically. Especially, following mozaicplasty, a gold
standard for the repair of large size articular cartilage defects,
subchondral bone remains exposed to cartilage tissue through the gaps
between inserted plugs. This allows for the advancement of capillaries
from bone tissue to cartilage, which eventually leads to formation of a
fibrovascular tissue that is mechanically inferior to and biologically
different from articular cartilage. The native cartilage-bone interface,
on the other hand, was designed to prevent progression of capillaries to
cartilage zone by a tiny membrane called tide-mark. Therefore, due to
insufficiency of current procedures to form a tide-mark-like zone,
repair/regeneration of OA remains as a challenge and new approaches
are needed to remedy this problem.

Function, Composition and Structure
One of the critical functions of native cartilage-bone interface is to

minimize the stress concentrations, which may occur between the two
tissues when load is applied to one, to form a smooth transition region

in order not to overload either tissue. This function is a direct
consequence of hierarchical organization of the extracellular matrix
(ECM) components forming the interface. Another function of the
interface is not to allow capillary development from vascularized bone
tissue to avascular cartilage tissue [3], which is accomplished by the
tide-mark.

Cartilage-bone interface at the knee joint has a thickness of around
100-200 µm [4] and structurally contains three different yet
uninterrupted compartments, namely, cartilage, mineralized cartilage,
and bone, containing various cell phenotypes such as chondrocytes,
hyperthrophic chondrocytes and osteoblasts, respectively [5]. The
major ECM components contained in these sub-tissues are collagen
type II and glycosaminoglycans; collagen type I, glycosaminoglycans,
minerals; and collagen type I and minerals, respectively (Table 1).

Tissue Cell Type Components

Cartilage Chondrocyte · Collagen type II

· Glycosaminoglycan

Mineralized cartilage Hyperthrophic chondrocyte · Collagen Type I, X

· Glycosaminoglycan

· Mineral

Bone Osteoblast · Collagen Type I

· Mineral

Table 1: Compositional distribution in cartilage-bone interface.

Another school of thought for the hierarchical organization of the
cartilage-bone interface is the belief of graded change in the
composition of ECM components [6-9]. Although the compartmental
organization approach for cartilage-bone interface components has
been dominant for years [5,10], recent studies characterizing cartilage-
bone, as well as tendon-bone, interface at microscopic dimensions
found that mineral composition is changing gradually across the
interface [4,11,12].

With the recent increased interest in the field of interface tissue
characterization, we are now more equipped with the structure and
composition of cartilage-bone interface, which could be translated into
design and fabrication of scaffolds for such applications.

Scaffolds for Cartilage-Bone Interface
One of the methods utilized for the treatment of damages associated

with the cartilage-bone interface at the knee is cell therapy (Table 2),
applied either directly or in conjuction with scaffolds [13]. Even
though cell therapy is a well-recognized and a versatile technique used
for regenerative purposes, it has its own drawbacks such as difficulties
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associated with cell isolation, proliferation, storage, transfer, cost (for
allogenic sources) and immune system reactions [14,15]. In addition,
this technique has limitations due to potential infection, pathogen
transfer and tumor growth. Therefore, cellular (with prementioned
risks) or acellular scaffolds remain as an attractive alternative for direct
cell therapy.

Therapy Cell Scaffold

Cell-based Direct cell transplantation √

Cellular scaffolds √ √

Cell-free Acellular scaffolds √

Table 2: Options for regeneration.

As the name implies, cellular scaffolds are structured and shaped
biomaterials incorporated with cells. Acellular scaffolds, on the other
hand, contain no cells and may be incorporated with chemotactic
agents to recruit endogenous cells into the scaffold to initiate
regeneration. Cell recruitment represents a more recent development
in the regenerative engineering, and is seen as a promising approach.
This method was successfully used with 3D printed polycaprolactone
(PCL) scaffolds in a sheep model for mensiscus regeneration [16].
However, cell recruitment has not been utilized in the regeneration
attempts for cartilage-bone interface at a scale of 100-200µm thickness.

Scaffolds utilized for cartilage-bone applications were traditionally
designed either as unitary homogeneous [17] or layered configurations
[10,18]. However, recent investigations at micrscopic levels showed
that the osteochondral interface exhibits a gradual change in the
composition of the matrix components [12], leading to a paradigm
shift in the understanding of scaffold design. Therefore, more recent
investigations focused on the design and fabrication of graded
scaffolds for osteochondral interface applications [6,7,19]. In one of
these studies, tricalciumphospate (TCP) mineral was embedded in
PCL nanofibers to fabricate scaffolds with gradually changing TCP
concentrations [6]. The same group of researchers produced
functionally graded PCL scaffolds incorporated with insulin and beta-
glyserophospate (beta-GP) biomolecules with varying concentrations
in opposite direction [7]. Human adipose derived stem cells (hADSCs)
were seeded on the graded scaffolds to form osteochondral-like
structures. In a similar study, poly (D,L-lactide-co-glycolic acid),
PLGA, microspheres were enriched with growth factors, stimulating
cartilage and bone formation, in a gradually changing fashion, and
their capacity were investigated for the treatment of osteochondral
defects in a rabbit femoral condile model [9]. Putting together, these
investigations demonstrate that scaffolding for osteochondral tissue
engineering is still under development, and that progress in technology
will certainly open up new avenues for the design and fabrication of
more realistic scaffolds [20].

Cell Options
Commonly used cell options for the osteochondral interface tissue

engineering include but are not limited to chondrocytes, osteoblasts
and stem/progenitor cells. Chondrocytes and osteoblasts could be
harvested through surgical procedures, proliferated, and used as cell
sources to be seeded on scaffolds to form cartilage and bone regions,
respectively. Nevertheless, limited availability of these cells due to
donor shortages, and morphological changes associated with some cell
types, especially for chondrocytes, when cultured under in vitro

conditions, stem/progenitor cells remain as a more favourable cell
sources.

Chondrocytes harvested from sheep [21] and bovine [22] are
commonly used as cell sources for osteochondral regeneration. In
addition, co-culture of chondrocytes and osteoblasts obtained from
similar sources is also an attractive strategy to form osteochondral-like
structures. In this regard, Cao et al. seeded chondrocytes on one side of
the 3D printed PCL scaffold and osteoblast on the other side, and
observed a mixture of the two distinct cell phenotypes in the middle
zone [23].

In the category of stem/progenitor cells, bone marrow derived stem
cells, adipose derived stem cells, synovial stem cells and embryonic
stem cells were demonstrated to be appropriate cell choices for
osteochondral regeneration [24,25]. Specific differentiation of these
cells into proper lineages is achieved by incorporating relevant
biomolecules into scaffolds in a specially controlled manner. For
example, transforming growth factor beta1 (TGF-beta1) and
transforming growth factor beta3 (TGF-beta3) are known to trigger
these cells to differentiate into chondrogenic lineage, while bone
morphogenic protein 2 (BMP2) can lead to osteogenic differentiaon
[26-29]. Therefore, incorporating TGF-beta1 or TGF-beta3 into one
side and BMP2 into the other, also coupled with the stem cells may
form appropriate conditions to generate structures resembling the
osteochondral interface.

Regeneration Attempts
Biomaterial/scaffold and biomolecule selection, as well as

employment of appropriate cells could play significant roles in
osteochondral regeneration efforts. Biomaterials are required to be
biologically compatible. They should not create any adverse effects in
terms of cell attachment, proliferation, morphology, membrane
characteristics and cellular activity such as ECM production and
expression of relevant markers. Biomolecules should contribute to the
cellular activities in the direction observed in their native environment.
Similarly, selected cells are expected to have properties or should have
capacities to perform activities of cells present in the target tissues.
Tissue regeneration may be possible at best only if these three
parameters are chosen appropriately, and combined to create a
synergistic effect to be able to generate structures, compositions and
functions observed in native osteochondral interface.

Biomaterial/scaffold design targeting osteochondral interface
regeneration could be classified as homogeneous (first generation),
compartmentalized (second generation), and graded (third generation)
scaffolds. Although, the first two generation scaffolds are still widely
investigated due to their ease of design/manufacture and simplicity in
terms of composition and structure, the third generation graded
scaffolds are now more prevalent due to their biomimicry. These
scaffolds could be designed to contain multiple biomolecules
positioned into the scaffold in a controlled fashion, and to release these
biofactors in a time-dependent manner to also serve as controlled
delivery devices. Such scaffolds were successfully employed for
interface regenerative engineering studies both in vitro and in vivo
[6,7,28]. These investigations revealed that when the right cells are
used in conjunction with an appropriate scaffold and/or scaffold
biofactors combination choice, native osteochondral interface could be
approximated both biologically and physically.
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